
independIT Integrative Technologies GmbH
Bergstraße 6
D–86529 Schrobenhausen

schedulix!focus

Hierarchical Batch Structures

Dieter Stubler Ronald Jeninga

November 25, 2016



Copyright © 2016 independIT GmbH

Legal notice

This work is copyright protected

Copyright © 2016 independIT Integrative Technologies GmbH
All rights reserved. No part of this work may be reproduced or transmitted
in any form or by any means, electronically or mechanically, including photo-
copying, recording, or by any information storage or retrieval system, without
the prior written permission of the copyright owner.



Hierarchical Batch Structures

Introduction

Process workflows in data warehouse environments frequently comprise a large
number of work steps that have to be coordinated and started in the right sequence.
Breaking down the individual steps as much as possible into sub-processes (pro-
cess decomposition) allows the workflows and their progress to be monitored and
controlled more effectively. When errors occur and processes are rerun, a fine gran-
ularity of the sub-processes allows errors to be remedied much more quickly and
the hardware resources can be utilised more efficiently by reducing the ’lost’ com-
puting time.
Decomposing the workflows for a data warehouse into as many single processes as
possible is therefore a key design goal for achieving and maintaining a stable and
reliable data warehouse operation.
A persistent pursuit of this goal will quickly result in workflows with many hun-
dred executable sub-processes.
If the deployed scheduling system does not support workflows with so many sub-
processes, or only insufficiently, the advantages of process decomposition will be
offset by the greater time and expense that has to be spent on implementation,
monitoring and operation. This frequently means that limits are placed on the de-
composition of sub-processes at a very early stage.

Hierarchical order of sub-processes

In order to be able to easily implement workflows comprising many sub-processes,
and to avoid losing track of such workflows when monitoring and running them,
the schedulix Scheduling System enables processes (jobs) to be grouped into hier-
archical structures (batches).
Dependencies can be defined at any of these hierarchical levels to provide for the
most simple, clearly organised and maintainable realisation possible of even the
most complex workflow structures. Dependencies related to a sub-batch are only
considered to have been fulfilled once all the jobs belonging to this sub-batch have
been completed. Similarly, all the jobs in a sub-batch ’inherit’ all the dependencies
of the parent sub-batches.

Example: A simple workflow

A workflow is to create 3 reports (R1, R2 and R3). To do this, 3 database tables
(T1, T2, T3) have to be updated first. Tables T1 and T2 can be updated in a parallel
operation. T3 can only be updated once the update of T1 has been completed. The
individual reports can be created parallel to one another. After the reports have
been created, they are then to be published in a web server directory.

1



Assembling this workflow without a hierarchical order will make it look as shown
in Figure
1 .

Figure 1: Batch structure without a hierarchical order

Even this relatively small workflow of 7 processes is not really transparent and
requires the definition of 13 (!) process dependency relationships.
If an attempt is made to reduce the number of necessary dependencies without a
hierarchical batch structure, this can be achieved by concatenating the single jobs.
Figure 2 illustrates this solution. Although this looks somewhat clearer now, this
approach still presents some problems.

Figure 2: Batch structure as a chain

The individual processes now no longer run parallel to one another but consecu-
tively in series, which means that the total time required to run the workflow is
unnecessarily excessive.

2



The information about the existing dependencies is lost, maintainability is dimin-
ished and any optimisation potential disappears because a subsequent developer
cannot decide whether the serial processing was technically necessary or easier to
implement due to technical reasons.
This can be significantly simplified by using hierarchical batch structures. Figure 3
clearly illustrates this.

Figure 3: Batch structure with a hierarchical order

Grouping the UPDATE_. . . jobs and CREATE_. . . jobs into the (sub-) batches UP-
DATE_TABLES and CREATE_REPORTS makes the whole workflow construct much
more manageable. The dependency of the CREATE_REPORTS batch on the UP-
DATE_TABLES batch is only considered to have been fulfilled once all the jobs in
UPDATE_TABLES have been completed. The same applies to the dependency of
the COPY_TO_WWW job on the CREATE_REPORTS batch. The CREATE_Rn jobs
implicitly ’inherit’ the dependency on the UPDATE_TABLES batch from their par-
ent batch CREATE_REPORTS.
This means that now only 3 dependency relationships are required to run the jobs
in the correct order.

Impact on maintainability

Hierarchical structures increase the maintainability of workflows by reducing the
change requirements and the risk of errors.

Example: Integrating an additional process

To clarify this point, a fourth report R4 is to be created in our example and the
requisite process is to be integrated in the workflow.

3



If this is done in the model without a hierarchical order, in addition to defining the
CREATE_R4 job and attaching it to the MAIN batch, it is also necessary to define
another 4 (!) extra dependencies to make sure that CREATE_R4 also waits for the
jobs UPDATE_T1, UPDATE_T2 and UPDATE_T3 and that COPY_TO_WWW now
also waits for the new job CREATE_R4. Figure 4 shows the new structure of our
workflow.
It is very easy to overlook a dependency here, which would produce false results
during the data warehouse operation. If we forget to make the COPY_TO_WWW
job dependent on the new job CREATE_R4, this would mean that if CREATE_R4
were to run longer than the other CREATE_. . . jobs, the COPY_TO_WWW job would
be triggered before the report R4 was created. This would result in the output of an
incorrect or obsolete report. To make matters worse, this error does not always oc-
cur, but is dependent on the temporal behaviour of the processes involved, making
troubleshooting much more difficult.

Figure 4: Batch structure without a hierarchical order after integrating the report
R4

In our hierarchically organised workflow definition, it is only necessary to define
the CREATE_R4 job and attach it to the CREATE_REPORTS sub-batch. No addi-
tional dependencies have to be created. The effort and risk of error are much di-
minished with this variant compared to the workflow without a hierarchical order.
Figure 5 shows the new structure of our workflow.

Example: Breaking a process down into sub-processes (process
decomposition)

The procedure for decomposing processes is also ideally supported by the hierar-
chical model of the schedulixScheduling System, as we shall demonstrate in the
following example.

4



Figure 5: Batch structure with a hierarchical order after integrating the report R4

The UPDATE_T1 process now runs for too long and is to be decomposed into two
parallel executable processes UPDATE_T1_A and UPDATE_T1_B. In the schedulix
Scheduling System this only requires the following actions:

1. The jobs UPDATE_T1_A and UPDATE_T1_B are defined.

2. The type is changed from UPDATE_T1 to ’BATCH’.

3. The jobs from the 1st are attached to the batch UPDATE_T1.

All the dependency relationships are preserved and the effort required to imple-
ment the change in the Scheduling System and the risk of errors are kept to a
minimum. Figure 6 shows our workflow after the process decomposition. The
CREATE_REPORTS sub-batch was closed in the illustration for reasons of clarity.
If this process decomposition were to be implemented in a workflow structure
without a hierarchical order, in addition to the steps described here it would be
necessary to create a large number of new dependency relationships to ensure that
the jobs are run in the correct sequence.

Further properties of hierarchically structured workflows

Hierarchically organised workflow structures support other functions in addition
to the properties mentioned here, but detailed descriptions are beyond the scope of
this documentation.
For example:

• Reusability by means of parameterisation

5



Figure 6: Batch structure following decomposition of the process UPDATE_T1 into
parallel sub-processes

• Automatic error handling and notifications (triggers)

• Hierarchical operating (suspend, resume, rerun, cancel, . . . at (sub-) batch
level)

• Conditional execution of sub-workflows

• Reruns of sub-workflows

• . . .

We will be taking a look at one or the other aspect in a future schedulix!focus.

Closing remarks

Even the extremely simple examples in this documentation clearly demonstrate the
advantages of hierarchical batch structures when modelling workflows. In larger
workflows with a huge number of sub-processes, this functionality of the utilised
scheduling system becomes a necessity without which an optimised and practical
process decomposition would no longer be possible.

The schedulix Scheduling System, with its highly developed and powerful concept
for the hierarchical mapping of processes, ideally supports process decomposition
while preserving the clarity and maintainability of even extremely large and com-
plex workflow structures.

6


