
independIT Integrative Technologies GmbH
Bergstraße 6
D–86529 Schrobenhausen

schedulix Server

Command Reference
Release 2.11

Dieter Stubler Ronald Jeninga

January 2, 2024

Copyright © 2024 independIT GmbH

Legal notice

This work is copyright protected

Copyright © 2024 independIT Integrative Technologies GmbH
All rights reserved. No part of this work may be reproduced or transmitted
in any form or by any means, electronically or mechanically, including photo-
copying, recording, or by any information storage or retrieval system, without
the prior written permission of the copyright owner.

Contents

Table of Contents 3

List of Tables 10

I. General 15

1. Introduction 17
Introduction . 17

2. Utilities 25
Starting and stopping the server . 25

server-start . 25
server-stop . 26

sdmsh . 27
sdms-auto_restart . 36
sdms-get_variable . 38
sdms-rerun . 40
sdms-set_state . 42
sdms-set_variable . 44
sdms-set_warning . 46
sdms-submit . 48

II. User Commands 51

3. alter commands 53
alter comment . 54
alter environment . 56
alter event . 57
alter exit state mapping . 58
alter exit state profile . 59
alter exit state translation . 61
alter folder . 62
alter footprint . 64
alter group . 66
alter interval . 67

3

alter job . 69
alter job definition . 74
alter named resource . 80
alter resource . 82
alter resource state mapping . 83
alter resource state profile . 84
alter schedule . 85
alter scheduled event . 87
alter scope . 88
alter server . 91
alter session . 93
alter trigger . 95
alter user . 97

4. connect commands 99
connect . 100

5. copy commands 103
copy folder . 104
copy named resource . 105
copy scope . 106

6. create commands 107
create comment . 108
create environment . 110
create event . 111
create exit state definition . 112
create exit state mapping . 113
create exit state profile . 114
create exit state translation . 117
create folder . 118
create footprint . 120
create group . 122
create interval . 123
create job definition . 130
create named resource . 150
create resource . 154
create resource state definition . 157
create resource state mapping . 158
create resource state profile . 159
create schedule . 160
create scheduled event . 162
create scope . 164
create trigger . 167

4

create user . 177

7. deregister commands 179
deregister . 180

8. disconnect commands 181
disconnect . 182

9. drop commands 183
drop comment . 184
drop environment . 186
drop event . 187
drop exit state definition . 188
drop exit state mapping . 189
drop exit state profile . 190
drop exit state translation . 191
drop folder . 192
drop footprint . 193
drop group . 194
drop interval . 195
drop job definition . 196
drop named resource . 197
drop resource . 198
drop resource state definition . 199
drop resource state mapping . 200
drop resource state profile . 201
drop schedule . 202
drop scheduled event . 203
drop scope . 204
drop trigger . 205
drop user . 206

10.finish commands 207
finish job . 208

11.get commands 209
get parameter . 210
get submittag . 211

12.kill commands 213
kill session . 214

13. link commands 215
link resource . 216

5

14. list commands 217
list calendar . 218
list dependency definition . 220
list dependency hierarchy . 222
list environment . 227
list event . 228
list exit state definition . 229
list exit state mapping . 230
list exit state profile . 231
list exit state translation . 232
list folder . 233
list footprint . 237
list group . 238
list interval . 239
list job . 241
list job definition hierarchy . 248
list named resource . 252
list resource state definition . 254
list resource state mapping . 255
list resource state profile . 256
list schedule . 257
list scheduled . 259
list scheduled event . 261
list scope . 263
list session . 265
list trigger . 267
list user . 271

15.move commands 273
move folder . 274
move job definition . 275
move named resource . 276
move schedule . 277
move scope . 278

16.multicommand commands 279
multicommand . 280

17.register commands 281
register . 282

18.rename commands 283
rename environment . 284
rename event . 285

6

rename exit state definition . 286
rename exit state mapping . 287
rename exit state profile . 288
rename exit state translation . 289
rename folder . 290
rename footprint . 291
rename group . 292
rename interval . 293
rename job definition . 294
rename named resource . 295
rename resource state definition . 296
rename resource state mapping . 297
rename resource state profile . 298
rename schedule . 299
rename scope . 300
rename trigger . 301
rename user . 302

19.resume commands 303
resume . 304

20.select commands 305
select . 306

21.set commands 307
set parameter . 308

22.show commands 309
show comment . 310
show environment . 313
show event . 316
show exit state definition . 318
show exit state mapping . 319
show exit state profile . 321
show exit state translation . 323
show folder . 325
show footprint . 327
show group . 330
show interval . 332
show job . 338
show job definition . 357
show named resource . 370
show resource . 374
show resource state definition . 380

7

show resource state mapping . 381
show resource state profile . 383
show schedule . 385
show scheduled event . 387
show scope . 389
show session . 396
show system . 398
show trigger . 401
show user . 405

23.shutdown commands 409
shutdown . 410

24.stop commands 411
stop server . 412

25.submit commands 413
submit . 414

26.suspend commands 417
suspend . 418

III. Jobserver Commands 419

27.Jobserver Commands 421
alter job . 422
alter jobserver . 427
connect . 428
deregister . 431
disconnect . 432
get next job . 433
multicommand . 435
reassure . 436
register . 437

IV. Job Commands 439

28.Job Commands 441
alter job . 442
connect . 447
disconnect . 450
get parameter . 451
get submittag . 452

8

multicommand . 453
set parameter . 454
set state . 455
submit . 456

V. Programming Examples 459

Programming Examples 461

29.Programming examples 461

9

List of Tables

1.1. Valid date formats . 20
1.2. Keywords that can be used with quotes as identifiers 21
1.3. Keywords und synonyms . 22
1.4. Reserved words . 23

6.1. job definition parameters . 141
6.2. Named Resource parameter types 152
6.3. Named Resource usage . 152
6.4. job definition parameters . 156
6.5. List of trigger types . 176

11.1. get parameter output . 210
11.2. get submittag output . 211

14.1. list calendar output . 219
14.2. list dependency definition output 221
14.3. list dependency hierarchy output 226
14.4. list environment output . 227
14.5. list event output . 228
14.6. list exit state definition output . 229
14.7. list exit state mapping output . 230
14.8. list exit state profile output . 231
14.9. list exit state translation output . 232
14.10. list folder output . 236
14.11. list footprint output . 237
14.12. list group output . 238
14.13. list interval output . 240
14.14. list job output . 247
14.15. list job definition hierarchy output 251
14.16. list named resource output . 253
14.17. list resource state definition output 254
14.18. list resource state mapping output 255
14.19. list resource state profile output . 256
14.20. list schedule output . 258
14.21. list scheduled output . 260
14.22. list scheduled event output . 262
14.23. list scope output . 264

11

14.24. list session output . 266
14.25. list trigger output . 270
14.26. list user output . 272

22.1. show comment output . 312
22.2. show environment output . 314
22.3. show environment RESOURCES subtable structure 314
22.4. show environment JOB_DEFINITIONS subtable structure 315
22.5. show event output . 317
22.6. show event PARAMETERS subtable structure 317
22.7. show exit state definition output . 318
22.8. show exit state mapping output . 319
22.9. show exit state mapping RANGES subtable structure 320
22.10. show exit state profile output . 322
22.11. show exit state profile STATES subtable structure 322
22.12. show exit state translation output 323
22.13. show exit state translation TRANSLATION subtable structure . . . 324
22.14. show folder output . 326
22.15. show footprint output . 328
22.16. show footprint RESOURCES subtable structure 328
22.17. show footprint JOB_DEFINITIONS subtable structure 329
22.18. show group output . 330
22.19. show group MANAGE_PRIVS subtable structure 331
22.20. show group USERS subtable structure 331
22.21. show interval output . 334
22.22. show interval SELECTION subtable structure 334
22.23. show interval FILTER subtable structure 334
22.24. show interval DISPATCHER subtable structure 335
22.25. show interval HIERARCHY subtable structure 336
22.26. show interval REFERENCES subtable structure 337
22.27. show interval EDGES subtable structure 337
22.28. show job output . 346
22.29. show job CHILDREN subtable structure 346
22.30. show job PARENTS subtable structure 347
22.31. show job PARAMETER subtable structure 347
22.32. show job REQUIRED_JOBS subtable structure 350
22.33. show job DEPENDENT_JOBS subtable structure 352
22.34. show job REQUIRED_RESOURCES subtable structure 354
22.35. show job AUDIT_TRAIL subtable structure 354
22.36. show job DEFINED_RESOURCES subtable structure 355
22.37. show job RUNS subtable structure 356
22.38. show job definition output . 362
22.39. show job definition CHILDREN subtable structure 363

12

22.40. show job definition PARENTS subtable structure 365
22.41. show job definition REQUIRED_JOBS subtable structure 366
22.42. show job definition DEPENDENT_JOBS subtable structure 368
22.43. show job definition REQUIRED_RESOURCES subtable structure . 369
22.44. show named resource output . 371
22.45. show named resource RESOURCES subtable structure 372
22.46. show named resource PARAMETERS subtable structure 372
22.47. show named resource JOB_DEFINITIONS subtable structure . . . 373
22.48. show resource output . 376
22.49. show resource ALLOCATIONS subtable structure 377
22.50. show resource PARAMETERS subtable structure 379
22.51. show resource state definition output 380
22.52. show resource state mapping output 381
22.53. show resource state mapping MAPPINGS subtable structure . . . 382
22.54. show resource state profile output 384
22.55. show resource state profile STATES subtable structure 384
22.56. show schedule output . 386
22.57. show scheduled event output . 388
22.58. show scope output . 391
22.59. show scope RESOURCES subtable structure 392
22.60. show scope CONFIG subtable structure 393
22.61. show scope CONFIG_ENVMAPPING subtable structure 393
22.62. show scope PARAMETERS subtable structure 395
22.63. show session output . 397
22.64. show system output . 399
22.65. show system WORKER subtable structure 400
22.66. show trigger output . 403
22.67. show trigger STATES subtable structure 404
22.68. show trigger PARAMETERS subtable structure 404
22.69. show user output . 406
22.70. show user MANAGE_PRIVS subtable structure 406
22.71. show user GROUPS subtable structure 407
22.72. show user EQUIVALENT_USERS subtable structure 407
22.73. show user COMMENT subtable structure 407

25.1. submit output . 416

27.1. get next job output . 434

28.1. get parameter output . 451
28.2. get submittag output . 452
28.3. submit output . 458

13

Part I.

General

15

1. Introduction

Introduction

Essentially, this document is divided into three parts. In the BICsuite Scheduling
System, there are three types of users (in the broadest sense of the word):

• Users

• Jobservers

• Jobs

Each of these users has his own command set at his disposal. These command sets
only overlap to a certain extent. For example, for jobservers there is the statement
get next job, which is not valid for either jobs or users. On the other hand, there
are forms of the submit statement will only make sense in a job context and which
can therefore only be implemented by jobs. Obviously only users are allowed to
create objects such as Exit State definitions or job definitions. In contrast, there are
also statements such as the connect statement which is valid for all types of users.
The structure of this document is oriented to the three types of users. The largest
part of this document deals with the user commands, while the two other parts
handle jobservers and job commands.
For the sake of completeness, the next chapter briefly explains the utility sdmsh.
This utility is easy to use and is an excellent choice for processing scripts using
BICsuite commands.
Since the syntax described here is the only interface to the BICsuite Scheduling
Server, all the utilities (and in particular BICsuite!Web) use this web interface.
To simplify the development of proprietary utilities, the server is capable of return-
ing its reactions to statements in various formats. The utility sdmsh, for example,
uses the serial protocol, with which serialised Java objects are transferred. In con-
trast BICsuite!Web uses the python protocol, with which textual representations of
Python structures are transferred that can be easily read in using the eval() func-
tion.

17

Syntax diagrams

Syntax diagrams The syntax diagrams are comprised of different symbols and metasymbols. The
symbols and metasymbols are listed and explained in the table below.

Symbol Meaning
keyword A keyword in the language. These have to be entered

as shown. One example is the keyword create.
name A parameter. In many cases, the user can choose a

name or a number to be entered here.
NONTERM A non-terminal symbol is represented by SMALL CAPS.

A syntax element that is explained further on in the
diagram has to be inserted here.

< all | any > This syntax element is an optional choice. One of the
syntax elements given in the angle brackets, which can
obviously also be non-terminal symbols, has to be se-
lected. In the simplest scenario there are only two
choices that can be made here, although frequently
there are more.

< all | any > This is also an optional choice. Unlike the previous
syntax element, the underscore of the first element em-
phasises that this option is the default choice.

[or alter] Optional syntax elements are placed in square brack-
ets.

{ statename } Syntax elements that are placed in braces are repeated
0 to n times.

JOB_PARAMETER

{, JOB_PARAMETER}
Cases where elements occur at least once are far more
common and are shown as represented here.

| In lists of possible syntax elements, the single possibil-
ities are separated by a |. Such a list is another way of
displaying optional choices. These two different forms
of presentation are used for purposes of clarity.

18

Literals

LiteralsLiterals are only required in the language definition for strings, numbers, and
dates/times.
Strings are delimited by single quotes, as in

node = ’puma.independit.de’

Integers are shown as either unsigned integer or signed signed_integer
in the syntax diagrams. A signed_integer can be prefixed with a + or - sign. Valid
unsigned integers lie in the range of numbers between 0 and 231−1. Signed integers
are therefore within the range between −231 + 1 and 231 − 1. If the syntax diagram
contains id, an unsigned integer between 0 and 263 − 1 is expected here.
Much more complicated are dates/times, particularly in statements concerning the
time scheduling. These literals are principally shown as strings with a special for-
mat.
The following syntax is used to comply with the notations based on ISO8601 as
given in Table 1.1 :

String Meaning Range String Meaning Range

YYYY year 1970 .. 9999 hh hour 00 .. 23
MM month 01 .. 12 mm minute 00 .. 59
DD day (of the month) 01 .. 31 ss second 00 .. 59
ww week (of the year) 01 .. 53

• All other strings stand by themselves.

• No differentiation is made between uppercase and lowercase.

• The earliest permissible point in time is 1970–01-01T00:00:00 GMT.

Format Example Simplified Format
YYYY 1990
YYYY−MM 1990−05 YYYYMM
YYYY−MM−DD 1990−05−02 YYYYMMDD
YYYY−MM−DDThh 1990−05−02T07 YYYYMMDDThh
YYYY−MM−DDThh:mm 1990−05−02T07:55 YYYYMMDDThhmm
YYYY−MM−DDThh:mm:ss 1990−05−02T07:55:12 YYYYMMDDThhmmss

−MM −05
−MM−DD −05−02 −MMDD
−MM−DDThh −05−02T07 −MMDDThh
−MM−DDThh:mm −05−02T07:55 −MMDDThhmm
Continued on next page

19

Continued from previous page

Format Example Simplified Format
−MM−DDThh:mm:ss −05−02T07:55:12 −MMDDThhmmss

−−DD −−02
−−DDThh −−02T07
−−DDThh:mm −−02T07:55 −−DDThhmm
−−DDThh:mm:ss −−02T07:55:12 −−DDThhmmss

Thh T07
Thh:mm T07:55 Thhmm
Thh:mm:ss T07:55:12 Thhmmss

T−mm T−55
T−mm:ss T−55:12 T−mmss

T−−ss T−−12

YYYYWww 1990W18

Www W18

Table 1.1.: Valid date formats

Identifier

Identifier In the BICsuite Scheduling System, objects are identified by their names. (Strictly
speaking, objects can also be identified from their internal Id, which is a number,
but this practice is not recommended). Valid names comprise a letter, underscore
(_), at sign (@) or hash sign (#) followed by numbers, letters or special characters.
Language-specific special characters such as the German umlaut are invalid.

Identifiers are treated as being case-insensitive if they are not enclosed in simple
quotes. Identifiers enclosed in quotes are case-sensitive. It is therefore not gener-
ally recommended to use quotes unless there is a valid reason for doing so.

Identifiers that are allowed to be enclosed in single quotes can also contain spaces
and several special characters. Again, this practice is not recommended as spaces
are normally interpreted as delimiters and therefore errors can easily occur. Spaces
aren’t allowed at the beginning or end of an identifier.

There are a number of keywords in the syntax that cannot be readily used as iden-
tifiers. Here it may be practicable to use quotes so that the identifiers are not recog-
nised as keywords. Table 1.2 contains a list of such keywords.

20

activate delay group milestone rawpassword submitcount
active delete header minute read submittag
action dependency history mode reassure submitted
add deregister hour month recursive sum
after dir identified move register suspend
alter disable ignore multiplier rename sx
amount disconnect immediate n required synchronizing
and distribution import name requestable synctime
avg drop in nicevalue rerun tag
base dump inactive node restartable test
batch duration infinite noinverse restrict time
before dynamic interval nomaster resume timeout
broken edit inverse nomerge revoke timestamp
by embedded is nonfatal rollback to
cancel enable isx nosuspend run touch
cancelled endtime ix notrace runnable trace
cascade environment job notrunc running translation
change errlog kill nowarn runtime tree
check error killed of s trigger
child event level offline sc trunc
children execute liberal on schedule type
childsuspend expand like online scope update
childtag expired limits only selection unreachable
clear factor line or serial unresolved
command failure list owner server usage
comment fatal local parameters session use
condition filter lockmode password set user
connect final logfile path shutdown view
constant finish loops pending show warn
content finished map performance sort warning
copy folder maps perl started week
count footprint mapping pid starting with
create for master pool starttime workdir
cycle force master_id priority static x
day free_amount max profile status xml
default from min protocol stop year
definition get merge public strict
defer grant merged python submit

Table 1.2.: Keywords that can be used with quotes as identifiers

21

There are also a number of synonyms. These are essentially keywords that can
be written in more than one way. Only one spelling variation is shown in Table
1.2. The synonyms can be used together arbitrarily. Table 1.3 gives a list of such
synonyms.

Keyword Synonym Keyword Synonym
definition definitions minute minutes
dependency dependencies month months
environment environments node nodes
errlog errlogfile parameter parameters
event events profile profiles
folder folders resource resources
footprint footprints schedule schedules
grant grants scope scopes
group groups server servers
hour hours session sessions
infinit infinite state states, status
interval intervals translation translations
job jobs user users
mapping mappings week weeks
milestone milestones year years

Table 1.3.: Keywords und synonyms

As in any language, there are also some reserved words and word combinations.
An overview is shown in Table 1.4. A special characteristic of word pairs is that
replacing a space with an underscore likewise produces a reserved word. The word
named_resource is therefore reserved (but ”named#resource” isn’t).

after final exit state translation non fatal
all final ext pid requestable amount
backlog handling finish child resource state
before final free amount resource state definition
begin multicommand get next job resource state mapping
broken active ignore dependency resource state profile
broken finished immediate local resource template
change state immediate merge resource wait
default mapping initial state run program
dependency definition job definition rerun program
dependency hierarchy job definition hierarchy scheduled event
dependency mode job final state profile
dependency wait job server status mapping
end multicommand job state suspend limit
Continued on next page

22

Continued from previous page
error text keep final submitting user
exec pid kill program synchronize wait
exit code local constant to kill
exit state merge mode until final
exit state mapping merge global until finished
exit state definition merge local
exit state profile named resource

Table 1.4.: Reserved words

Editions

EditionsThere are three editions of the BICsuite Scheduling System. Since features from
later editions are not always present in the earlier editions, the relevant statements
or options within the statements are designated accordingly. A letter in the top cor-
ner of the page indicates for which edition of the system this statement is available.
Deviations from the general statement are shown in the syntax diagram.
The symbols have the following meanings:

Symbol Meaning

B This symbol indicates a feature in the Basic version and all later ver-
sions.

P This symbol indicates a feature in the Professional and Enterprise ver-
sions and all later versions.

E This symbol indicates a feature in the Enterprise version.

23

2. Utilities

Starting and stopping the server

server-start

Introduction

IntroductionThe utility server-start is used to start the scheduling server.

Call

CallThe following commands are used to call server-start:

server-start [OPTIONS] config-file

OPTIONS:
-admin

| -protected

The individual options have the following meanings:

Option Meaning
-admin The server starts in ”’admin” mode. This

means that user logins are disabled apart from
the user SYSTEM.

-protected ”’-protected mode is similar to Admin mode.
The difference here is that the internal threads
(TimerThread and SchedulingThread) are not
started. This allows administrative tasks to be
carried out without concurrent transactions be-
ing performed.

If the server has already been started, the second server either (depending on the
configuration) takes over the operation or repeatedly makes an unsuccessful at-
tempt to start.
The server-start utility can be only be used by the user whose Id was used to install
the system.

25

server-stop

Introduction

Introduction The server-stop utility is used to stop the scheduling server.

Call

Call The following command is used to call server-stop:

server-stop
Initially, an attempt is made to stop the server ’gracefully’. First, all the user con-
nections are terminated to stop all the internal threads.
If this approach fails or it takes too long, the server is stopped using the operating
system’s mechanisms.
If the server has not been started, the server-stop command has no effect.
The server-stop utility can be only be used by the user whose Id was used to install
the system.

26

sdmsh

Introduction

IntroductionThe sdmsh utility is a small program that enables the user to interactively work
with the scheduling server. In contrast to the BICsuite!Web front end, for instance,
this working method is text-oriented. This means it is possible to write scripts and
execute them using sdmsh.
The sdmsh executable is a small script (or batch file) that encapsulates the call of the
required Java program. Of course, there is no reason why this Java program should
not be called manually. It is only there for convenience’s sake.

Call

CallThe following commands are used to call sdmsh:

sdmsh [OPTIONS] [username [password [host [port]]]]

OPTIONS:
< --host | -h > hostname

| < --port | -p > portnumber
| < --user | -u > username
| < --pass | -w > password
| < --jid | -j > jobid
| < --key | -k > jobkey
| < --[no]silent | -[no]s >
| < --[no]verbose | -[no]v >
| < --ini | -ini > inifile
| < --[no]tls | -[no]tls >
| --[no]help
| --info sessioninfo
| -[no]S
| --timeout timeout

The individual options have the following meanings:

27

Option Meaning
< --host | -h > hostname BICsuite Server Host
< --port | -p > portnumber BICsuite Server port
< --user | -u > username User name (user or jid has to be specified)
< --pass | -w > password Password (is used in combination with the op-

tion --user)
< --jid | -j > jobid Job Id (user or jid has to be specified)
< --key | -k > jobkey Job key (is used in combination with the option

--jid)
< --[no]silent | -[no]s > [No] (error) Messages are not returned
< --[no]verbose | -[no]v > [No] Commands, feedback and additional

messages are returned
< --ini | -ini > inifile Use the specified configuration file to set op-

tions
< --[no]tls | -[no]tls > Use access via TLS/SSL [not]
--[no]help Return a help text
--info sessioninfo Set the accompanying information as descrip-

tive information about the session
-[no]S Silent option. This option is obsolete and exists

for reasons of backward compatibility
--timeout timeout The number of seconds after which the server

terminates an idle session. The value 0 means
no timeout

sdmsh obviously requires information to connect to the correct BICsuite Scheduling
System. The necessary data can be specified in the command line or by using an
options file. Missing values for the user name and password are queried by sdmsh.
If values for the host and port are not given, the defaults values ”localhost” and
2506 are used. It is not advisable to specify the password in the command line
because this information can frequently be easily read out by other users.

Options file

Options file The options file has the same format as a Java property file. (Please refer to the
official Java documentation for details of the precise syntax specification.)
The following option files play a role:

• $SDMSCONFIG/sdmshrc

• $HOME/.sdmshrc

• Optionally, a file specified in the command line

28

The files are valuated in the given order. If options are present in several files, the
value in the last valuated file ”wins”. Options that are specified in the command
line take precedence over all the other specifications.

The following keywords are recognised:

Keyword Meaning
User The user’s name
Password The user’s password
Host Name or IP address of the host
Info Additional information for identifying a connection is set
Port Port number of the scheduling server (default: 2506)
Silent (Error) messages are not returned
Timeout Timeout value for the session (0 means no timeout)
TLS Use an SSL/TLS connection
Verbose Commands, feedback and additional messages are returned

Since the user’s password is shown in plain text in this file, careful consideration
needs to be taken when assigning the access privileges for this file. It is, of course,
possible to not specify the password and to enter it every time sdmsh is started.

Only the following keywords can be used in configuration files:

Keyword Meaning
KeyStore Keystore for TLS/SSL communication
TrustStore Truststore for TLS/SSL communication
KeyStorePassword Keystore password
TrustStorePassword Truststore password

Internal commands

Internal
commands

Apart from the BICsuite commands described in the following chapters, sdmsh
also knows a few simple commands of its own. These are briefly described below.
Internal commands do not have to be closed with a semicolon.

disconnect The disconnect command is used to exit sdmsh. Because different
commands are commonly used to exit a tool in different work environments, an
attempt was made here to incorporate many varying formulations.
The syntax for the disconnect command is:

29

< disconnect | bye | exit | quit >

EXAMPLE Here is an example of the disconnect command.

ronald@jaguarundi:~$ sdmsh
Connect

CONNECT_TIME : 23 Aug 2007 07:13:30 GMT

Connected

[system@localhost:2506] SDMS> disconnect
ronald@jaguarundi:~$

echo If sdmsh is being used interactively, it is visually evident which command
has just been entered. This is not the case in batch mode, i.e. when processing a
script. The echo command can be used to enable and disable the rendering of the
entered statement. This is enabled by default.
The syntax for the echo command is:

echo < on | off >

EXAMPLE The effect of these two options is shown below. Following the command
echo on

[system@localhost:2506] SDMS> echo on
End of Output

[system@localhost:2506] SDMS> show session;
show session;

Session

THIS : *
SESSIONID : 1001
START : Tue Aug 23 11:47:34 GMT+01:00 2007
USER : SYSTEM
UID : 0
IP : 127.0.0.1
TXID : 136448
IDLE : 0
TIMEOUT : 0
STATEMENT : show session

Session shown

[system@localhost:2506] SDMS> echo off

30

End of Output

[system@localhost:2506] SDMS> show session;

Session

THIS : *
SESSIONID : 1001
START : Tue Aug 23 11:47:34 GMT+01:00 2007
USER : SYSTEM
UID : 0
IP : 127.0.0.1
TXID : 136457
IDLE : 0
TIMEOUT : 0
STATEMENT : show session

Session shown

[system@localhost:2506] SDMS>

help The help command opens a condensed help text about the internal sdmsh
commands.
The syntax for the help command is:

help

EXAMPLE The help command only returns a condensed help text about the syntax
for the internal sdmsh commands. This is shown in the example below. (The lines
have been wrapped for this document and so the actual output may differ to what
is written here).

[system@localhost:2506] SDMS> help
Condensed Help Feature

Internal sdmsh Commands:
disconnect|bye|exit|quit -- leaves the tool
echo on|off -- controls whether the statement text is

printed or not
help -- gives this output
include '<filespec>' -- reads sdms(h) commands from the given

file
prompt '<somestring>' -- sets to prompt to the specified value

%H = hostname, %P = port, %U = user,
%% = %

timing on|off -- controls whether the actual time is
printed or not

whenever error
continue|disconnect <integer> -- specifies the behaviour of the program

31

in case of an error
!<shellcommand> -- executes the specified command. sdmsh

has no intelligence
at all regarding terminal I/O

End of Output
[system@localhost:2506] SDMS>

include Files can be integrated into BICsuite statements using the include com-
mand.
The syntax for the include command is:

include ’filespec’

EXAMPLE In the following example, a file only containing the command ”show
session;” is inserted.

[system@localhost:2506] SDMS> include '/tmp/show.sdms'
Session

THIS : *
SESSIONID : 1001
START : Tue Aug 23 11:47:34 GMT+01:00 2007
USER : SYSTEM
UID : 0
IP : 127.0.0.1
TXID : 136493
IDLE : 0
TIMEOUT : 0
STATEMENT : show session

Session shown

[system@localhost:2506] SDMS>

prompt The prompt command can be used to specify an arbitrary prompt. There
are a number of variable values that can be inserted automatically by the program.
The codes for the individual variables are shown in the table below:

Code Meaning
%H Hostname des Scheduling Servers
%P TCP/IP Port
%U Username
%% Percent character (%)

32

The default prompt has the following definition: [%U@%H:%P] SDMS>.
The syntax for the prompt command is:

prompt ’somestring’

EXAMPLE In the following example, an empty prompt is defined first. A BICsuite
statement is then executed to make the effect more clearly visible. A simple string
is then selected as a prompt, and finally the variables are used.

[system@localhost:2506] SDMS> prompt ''
End of Output

show session;
show session;

Session

THIS : *
SESSIONID : 1001
START : Tue Aug 23 11:47:34 GMT+01:00 2007
USER : SYSTEM
UID : 0
IP : 127.0.0.1
TXID : 136532
IDLE : 0
TIMEOUT : 0
STATEMENT : show session

Session shown

prompt 'hello world '

End of Output

hello world prompt '[%U@%H:%P] please enter your wish! > '

End of Output

[system@localhost:2506] please enter your wish! >

timing The timing command provides information about the execution time for
a statement. Normally, this option is disabled and so no information about the
execution time is given. The time is stated in milliseconds.
The syntax for the timing command is:

timing < off | on >

33

EXAMPLE The following example shows the timing information for a simple BIC-
suite statement. The execution time for the statements and the time that was re-
quired to output the result is shown.

[system@localhost:2506] SDMS> timing on
End of Output

[system@localhost:2506] SDMS> show session;
Execution Time: 63
show session;

Session

THIS : *
SESSIONID : 1002
START : Tue Aug 23 11:53:15 GMT+01:00 2007
USER : SYSTEM
UID : 0
IP : 127.0.0.1
TXID : 136559
IDLE : 0
TIMEOUT : 0
STATEMENT : show session

Session shown

[system@localhost:2506] SDMS>
Render Time : 143

whenever An error handling routine is absolutely essential particularly when
sdmsh is being used to execute scripts. The whenever statement tells sdmsh how
to deal with errors. By default errors are ignored, which also corresponds to the
desired behaviour for interactive working.
The syntax for the whenever command is:

whenever error < continue | disconnect integer >

EXAMPLE The example below shows the behaviour of both the continue option and
the disconnect option. The Exit Code for a process that was started by the Bourne
shell (and other Unix shells as well) can be shown by outputting the variable $? .

[system@localhost:2506] SDMS> whenever error continue
End of Output

[system@localhost:2506] SDMS> show exit state definition does_not_exist;
show exit state definition does_not_exist;

ERROR:03201292040, DOES_NOT_EXIST not found

34

[system@localhost:2506] SDMS> whenever error disconnect 17

End of Output

[system@localhost:2506] SDMS> show exit state definition does_not_exist;
show exit state definition does_not_exist;

ERROR:03201292040, DOES_NOT_EXIST not found

[system@localhost:2506] SDMS>
ronald@jaguarundi:~$ echo $?
17
ronald@jaguarundi:~$

Shell call It frequently happens that a shell command has to be quickly exe-
cuted, for instance to see what the file that is to be run (using include) is called. If
no special capabilities are required of the terminal, such as is the case when calling
an editor, a shell command can be executed by prefixing it with an exclamation
mark.
The syntax for a shell call is:

!shellcommand

EXAMPLE In the following example, a short list of all the sdmsh scripts in the /tmp
directory is outputted.

[system@localhost:2506] SDMS> !ls -l /tmp/*.sdms
-rw-r--r-- 1 ronald ronald 15 2007-08-23 09:30 /tmp/ls.sdms
End of Output

[system@localhost:2506] SDMS>

35

sdms-auto_restart

Introduction

Introduction The utility sdms-auto_restart is used to automatically restart jobs that have failed.
A number of simple conditions have to be met to do this. Probably the most impor-
tant condition is that the job defines a parameter AUTORESTART with the value
TRUE. This parameter can naturally also be set at a higher level.
The following parameters influence the behaviour of the AUTORESTART utilities:

Parameter Effect
AUTORESTART The autorestart only functions if this param-

eter is set to ”TRUE”
AUTORESTART_MAX Defines the maximum number of automatic

restarts if set
AUTORESTART_COUNT Is set by the aurorestart utility to count the

number of restarts
AUTORESTART_DELAY The time in minutes before a job is restarted

The AUTORESTART utility can be defined as a trigger. The trigger types IMMEDI-
ATE_LOCAL and FINISH_CHILD can be used.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
auto_restart.

Call

Call The following commands are used to call sdms-auto_restart:

sdms-auto_restart [OPTIONS] < --host | -h > hostname
< --port | -p > portnumber < --user | -u > username
< --pass | -w > password < --failed | -f > jobid

OPTIONS:
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --delay | -d > seconds
< --max | -m > number
< --warn | -W >

36

The individual options have the following meanings:

Option Meaning
< --host | -h > hostname Host name of the scheduling server
< --port | -p > portnumber Port of the scheduling server
< --user | -u > username User name for the login
< --pass | -w > password Password for the login
< --failed | -f > jobid Job Id of the job that is to be restarted
< --silent | -s > Reduces the number of messages that are re-

turned
< --verbose | -v > Increases the number of messages that are

returned
< --timeout | -t > minutes Number of minutes for attempting to get a

server connection
< --cycle | -c > minutes Number of minutes for the delay between

two attempts
< --help | -h > Returns a condensed help
< --delay | -d > minutes Number of minutes for the delay until the

job is restarted
< --max | -m > number Maximum number of automatic restarts
< --warn | -W > The warning flag is set when the maximum

number of restarts has been reached

37

sdms-get_variable

Introduction

Introduction The utility sdms-get_variable offers a simple way of reading out job parameters
from the scheduling system.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
get_variable.

Call

Call The following commands are used to call sdmsh-get_variable:

sdms-get_variable [OPTIONS] < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid
< --name | -n > parametername

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --mode | -m > mode

The individual options have the following meanings:

Option Meaning
< --host | -h > hostname Host name of the scheduling server
< --port | -p > portnumber Port of the scheduling server
< --user | -u > username User name for the login
< --pass | -w > password Password for the login (for a connection as

user)
< --key | -k > jobkey for the login (for a connection as job)
< --silent | -s > Reduces the number of messages that are re-

turned
Continued on the next page

38

Continued from the previous page

Option Meaning
< --verbose | -v > Increases the number of messages that are

returned
< --timeout | -t > minutes Number of minutes for attempting to get a

server connection
< --cycle | -c > minutes Number of minutes for the delay between

two attempts to set up a server connection
< --help | -h > Returns a condensed help text about calling

the utility
< --mode | -m > mode Mode for determining the parameter (lib-

eral, warn, strict)

Example

ExampleThe example below shows how to get the variable value of the variable RE-
SPONSE of job 5175119.

ronald@cheetah:~$ sdms-get_variable -h localhost -p 2506 \
-j 5175119 -u donald -w duck -n RESPONSE

39

sdms-rerun

Introduction

Introduction The utility sdms-rerun is used to rerun a job in a restartable state from a script or
program. The logic of the option files that applies for the sdmsh utility is also used
for sdms-rerun.

Call

Call The following commands are used to call sdms-rerun:

sdms-rerun [OPTIONS] < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --suspend | -S >
< --delay | -D > delay
< --unit | -U > unit
< --at | -A > at

The individual options have the following meanings:

Option Meaning
< --host | -h > hostname Host name of the scheduling server
< --port | -p > portnumber Port of the scheduling server
< --user | -u > username User name for the login
< --pass | -w > password Password for the login (for a connection as

user)
< --silent | -s > Reduces the number of messages that are re-

turned
Continued on the next page

40

Continued from the previous page

Option Meaning
< --verbose | -v > Increases the number of messages that are

returned
< --timeout | -t > minutes Number of minutes for attempting to get a

server connection
< --cycle | -c > minutes Number of minutes for the delay between

two attempts to set up a server connection
< --help | -h > Returns a condensed help text about calling

the utility
< --suspend | -S > The job is suspended
< --delay | -D > delay The job is automatically resumed after delay

units
< --unit | -U > unit Unit for the delay option (default MINUTE)
< --at | -A > at Automatic resume at the specified time

41

sdms-set_state

Introduction

Introduction The utility sdms-set_state offers a simple way of setting the state of a job in the
scheduling system.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
set_state.

Call

Call The following commands are used to call sdmsh-set_state:

sdms-set_state [OPTIONS] < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid
< --state | -S > statename

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --case | -C >
< --[no]force | -[no]f >

The individual options have the following meanings:

Option Meaning
< --host | -h > hostname Host name of the scheduling server
< --port | -p > portnumber Port of the scheduling server
< --user | -u > username User name for the login
< --pass | -w > password Password for the login (for a connection as

user)
< --key | -k > jobkey Password for the login (for a connection as

job)
Continued on the next page

42

Continued from the previous page

Option Meaning
< --silent | -s > Reduces the number of messages that are re-

turned
< --verbose | -v > Increases the number of messages that are

returned
< --timeout | -t > minutes Number of minutes for attempting to get a

server connection
< --cycle | -c > minutes Number of minutes for the delay between

two attempts to set up a server connection
< --help | -h > Returns a condensed help text about calling

the utility
< --case | -C > Regard names to be case sensitive
< --state | /-S > state The state to set
< --force | -f > Force if job does not define a mapping for

the specified state

43

sdms-set_variable

Introduction

Introduction The utility sdms-set_variable offers a simple way of setting job parameters in the
scheduling system.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
set_variable.

Call

Call The following commands are used to call sdms-set_variable:

sdms-set_variable [OPTIONS] < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid
parametername value { parametername value}

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --case | -C >

The individual options have the following meanings:

Option Meaning
< --host | -h > hostname Host name of the scheduling server
< --port | -p > portnumber Port of the scheduling server
< --user | -u > username User name for the login
< --pass | -w > password Password for the login (for a connection as

user)
< --key | -k > jobkey for the login (for a connection as job)
< --silent | -s > Reduces the number of messages that are re-

turned
Continued on the next page

44

Continued from the previous page

Option Meaning
< --verbose | -v > Increases the number of messages that are

returned
< --timeout | -t > minutes Number of minutes for attempting to get a

server connection
< --cycle | -c > minutes Number of minutes for the delay between

two attempts to set up a server connection
< --help | -h > Returns a condensed help text about calling

the utility
< --case | -C > Names are case-sensitive

45

sdms-set_warning

Introduction

Introduction The utility sdms-set_warning is used to set the warning flag for a job. A text can
be optionally specified. The warning flag can be set for a job by users who have
been granted the Operate privilege. A job can set the warning flag for itself.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
set_warning.

Call

Call The following commands are used to call sdms-set_warning:

sdms-set_warning [OPTIONS] < --host | -h > hostname
< --port | -p > portnumber < --jid | -j > jobid

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --warning | -m > warning

The individual options have the following meanings:

Option Meaning
< --host | -h > hostname Host name of the scheduling server
< --port | -p > portnumber Port of the scheduling server
< --user | -u > username User name for the login
< --pass | -w > password Password for the login (for a connection as

user)
< --key | -k > jobkey for the login (for a connection as job)
< --silent | -s > Reduces the number of messages that are re-

turned
Continued on the next page

46

Continued from the previous page

Option Meaning
< --verbose | -v > Increases the number of messages that are

returned
< --timeout | -t > minutes Number of minutes for attempting to get a

server connection
< --cycle | -c > minutes Number of minutes for the delay between

two attempts to set up a server connection
< --help | -h > Returns a condensed help text about calling

the utility
< --warning | -m > warning Warning text

47

sdms-submit

Introduction

Introduction The utility sdms-submit is used to start jobs or batches. These can be started as a
standalone workflow or also as a child of an existing job. In the latter case, if it is
defined in the parent-child hierarchy an alias can be specified to identify the job or
batch that is to be submitted.
The logic of the option files that applies for the sdmsh utility is also used for sdms-
submit.

Call

Call The following commands are used to call sdms-submit:

sdms-submit [OPTIONS] < --host | -h > hostname
< --port | -p > portnumber < --job | -J > jobname

OPTIONS:
< --user | -u > username
< --pass | -w > password
< --jid | -j > jobid
< --key | -k > jobkey
< --silent | -s >
< --verbose | -v >
< --timeout | -t > minutes
< --cycle | -c > minutes
< --help | -h >
< --tag | -T > tag
< --master | -M >
< --suspend | -S >
< --delay | -D > delay
< --unit | -U > unit
< --at | -A > at

The individual options have the following meanings:

Option Meaning
< --host | -h > hostname Host name of the scheduling server
Continued on the next page

48

Continued from the previous page

Option Meaning
< --port | -p > portnumber Port of the scheduling server
< --user | -u > username User name for the login
< --pass | -w > password Password for the login (for a connection as

user)
< --key | -k > jobkey for the login (for a connection as job)
< --silent | -s > Reduces the number of messages that are re-

turned
< --verbose | -v > Increases the number of messages that are

returned
< --timeout | -t > minutes Number of minutes for attempting to get a

server connection
< --cycle | -c > minutes Number of minutes for the delay between

two attempts to set up a server connection
< --help | -h > Returns a condensed help text about calling

the utility
< --tag | -T > tag Tag for dynamic submits
< --master | -M > Submit for a master, no child
< --suspend | -S > The job is suspended
< --delay | -D > delay The job is automatically resumed after delay

units
< --unit | -U > unit Unit for the delay option (default MINUTE)
< --at | -A > at Automatic resume at the specified time

49

Part II.

User Commands

51

3. alter commands

53

alter comment

Purpose

Purpose The purpose of the alter comment statement is to change the comment for the
specified object.

Syntax

Syntax The syntax for the alter comment statement is

alter [existing] comment on OBJECTURL

with CC_WITHITEM

OBJECTURL:
distribution distributionname for pool identifier {. identifier} in serverpath

| environment environmentname
| exit state definition statename
| exit state mapping mappingname
| exit state profile profilename
| exit state translation transname
| event eventname
| resource identifier {. identifier} in folderpath
| folder folderpath
| footprint footprintname
| group groupname
| interval intervalname
| job definition folderpath
| job jobid
| named resource identifier {. identifier}
| parameter parametername of PARAM_LOC

| resource state definition statename
| resource state mapping mappingname
| resource state profile profilename
| scheduled event schedulepath . eventname
| schedule schedulepath
| resource identifier {. identifier} in serverpath
| < scope serverpath | jobserver serverpath >
| trigger triggername on TRIGGEROBJECT [< noinverse | inverse >]
| user username

54

CC_WITHITEM:
CC_TEXTITEM {, CC_TEXTITEM}

| url = string

PARAM_LOC:
folder folderpath

| job definition folderpath
| named resource identifier {. identifier}
| < scope serverpath | jobserver serverpath >

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath

CC_TEXTITEM:
tag = < none | string > , text = string

| text = string

Description

DescriptionThe alter comment command is used to change the condensed description or URL
of the description of the object in question. Of course, the type of information can
be changed as well. The comment is versioned. This means that comments are not
overwritten. When the commented object is displayed, the displayed comment is
the one that matches the version of the displayed object.
The optional existing keyword is used to prevent error messages from being dis-
played and the current operation from being terminated. This is particularly useful
in conjunction with multicommands.

Output

OutputThis statement returns a confirmation of a successful operation.

55

alter environment

Purpose

Purpose The purpose of the alter environment statement is to alter the properties of the
specified environment.

Syntax

Syntax The syntax for the alter environment statement is

alter [existing] environment environmentname
with ENV_WITH_ITEM

alter [existing] environment environmentname
add (ENV_RESOURCE {, ENV_RESOURCE})

alter [existing] environment environmentname
delete (RESOURCEPATH {, RESOURCEPATH})

ENV_WITH_ITEM:
resource = none

| resource = (ENV_RESOURCE {, ENV_RESOURCE})

ENV_RESOURCE:
identifier {. identifier} [< condition = string | condition = none >]

RESOURCEPATH:
identifier {. identifier}

Description

Description The alter environment statement is used to change the resource requests that are
defined in this environment. Running jobs are not affected.
The ”with resource =” form of the statement replaces the existing group of resource
requests. The other types either add the specified requests or deletes them. It is
considered an error to delete a request that is not part of the environment or to add
a request for an already required resource.
Only administrators are authorised to perform this action.

Output

Output This statement returns a confirmation of a successful operation.

56

alter event

Purpose

PurposeThe purpose of the alter event statement is to change properties of the specified
event.

Syntax

SyntaxThe syntax for the alter event statement is

alter [existing] event eventname
with EVENT_WITHITEM {, EVENT_WITHITEM}

EVENT_WITHITEM:
action =
submit folderpath [with parameter = (PARAM {, PARAM})]

| group = groupname

PARAM:
parametername = < string | number >

Description

DescriptionThe alter event statement is used to change the properties of an event. A parame-
ter for a job submit can be specified using the with parameter clause. For a detailed
description of these options, refer to the create event statement on page 111.

Output

OutputThis statement returns a confirmation of a successful operation.

57

alter exit state mapping

Purpose

Purpose The purpose of the alter exist state mapping statement is to change properties of
the specified mapping.

Syntax

Syntax The syntax for the alter exit state mapping statement is

alter [existing] exit state mapping mappingname
with map = (statename { , signed_integer , statename })

Description

Description The alter exit state mapping statement defines the mapping of the Exit Codes for
logical Exit States. The simplest form of this statement only specifies one Exit State.
This means that the job acquires this Exit State when it finishes regardless of its Exit
Code. More complex definitions specify more than one Exit State and at least one
delimitation.
A statement like

alter exit state mapping example1
with map = (failure,

0, success,
1, warning,
4, failure);

defines the following mapping:

Exit code Exit code Resulting
range from range until exit state
−∞ -1 failure

0 0 success
1 3 warning
4 ∞ failure

Output

Output This statement returns a confirmation of a successful operation.

58

alter exit state profile

Purpose

PurposeThe purpose of the alter exit state profile statement is to change properties of the
specified profile.

Syntax

SyntaxThe syntax for the alter exit state profile statement is

alter [existing] exit state profile profilename
with WITHITEM {, WITHITEM}

WITHITEM:
default mapping = < none |mappingname >

| force
| state = (ESP_STATE {, ESP_STATE})

ESP_STATE:
statename < final | restartable | pending > [OPTION { OPTION}]

OPTION:
batch default

| broken
| dependency default
| disable
| unreachable

Description

DescriptionThe alter exit state profile statement is used to add Exit States to the profile or
delete them, as well as to define the default Exit State Mapping. For a detailed
description of these options, refer to the create exit state profile statement on page
114.

force The force option labels the Exit State Profiles as being invalid, which only
means that the integrity still has to be verified. The label is removed after a success-
ful verification. The verification is carried out by submitting a job definition that
uses the Exit State Profiles. The purpose of the force flag is to be capable of chang-
ing several Exit State Profiles (and perhaps some other objects) without the need
for a consistent state after each change.

59

Output

Output This statement returns a confirmation of a successful operation.

60

alter exit state translation

Purpose

PurposeThe purpose of the alter exit state translation statement is to change properties of
the specified exit state translation.

Syntax

SyntaxThe syntax for the alter exit state translation statement is

alter [existing] exit state translation transname
with translation = (statename to statename {, statename to statename}
)

Description

DescriptionThe alter exit state translation statement changes a previously defined Exit State
Translation. Running jobs are not affected.
If the optional existing keyword has been specified, no error is created if the speci-
fied Exit State Translation could not be found.

Output

OutputThis statement returns a confirmation of a successful operation.

61

alter folder

Purpose

Purpose The purpose of the alter folder statement is to alter the properties of a folder.

Syntax

Syntax The syntax for the alter folder statement is

alter [existing] folder folderpath
with WITHITEM {, WITHITEM}

WITHITEM:
environment = < none | environmentname >

| group = groupname [cascade]
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| parameter = none
| parameter = (parametername = string {, parametername = string})

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit
| suspend

62

| use
| view

Description

DescriptionThe alter folder statement changes the properties of a folder. For a detailed de-
scription of these options, refer to the create folder statement on page 118.
If the optional existing keyword has been specified, no error is created if the speci-
fied folder does not exist.
Although the folder SYSTEM cannot be created, dropped or renamed, it can be
altered to some extend. It is not possible to change the owning group, but it is
possible to specify an environment or to create parameters.

Output

OutputThis statement returns a confirmation of a successful operation.

63

alter footprint

Purpose

Purpose The purpose of the alter footprint statement is to change the properties of the
specified footprint.

Syntax

Syntax The syntax for the alter footprint statement is

alter [existing] footprint footprintname
with resource = (REQUIREMENT {, REQUIREMENT})

alter [existing] footprint footprintname
add resource = (REQUIREMENT {, REQUIREMENT})

alter [existing] footprint footprintname
delete resource = (RESOURCEPATH {, RESOURCEPATH})

REQUIREMENT:
ITEM { ITEM}

RESOURCEPATH:
identifier {. identifier}

ITEM:
amount = integer

| < nokeep | keep | keep final >
| identifier {. identifier}

Description

Description The alter footprint command changes the list of resource requests. There are three
kinds of this statement.

• The first one determines all the resource requests.

• The second one adds resource requests to the request list.

• The third kind removes requests from the list.

For a detailed description of these options, refer to the create footprint statement on
page 120.

64

Output

OutputThis statement returns a confirmation of a successful operation.

65

alter group

Purpose

Purpose The purpose of the alter group statement is to alter the user to group assignments.

Syntax

Syntax The syntax for the alter group statement is

alter [existing] group groupname
with WITHITEM

alter [existing] group groupname
ADD_DELITEM {, ADD_DELITEM}

WITHITEM:
user = none

| user = (username {, username})

ADD_DELITEM:
< add | delete > user = (username {, username})

Description

Description The alter group command is used to define which users belong to the group.
There are two kinds of this statement:

• The first one defines the list of users who belong to the group.

• The second one adds users to the group or deletes them.

In all cases, deleting users from their default group is considered to be an error.
It is not possible to delete users from the PUBLIC group.
If a user does not belong to a group, any attempt made to delete the user from this
group is ignored.
If the existing keyword has been specified, it is not considered to be an error if the
group does not exist.

Output

Output This statement returns a confirmation of a successful operation.

66

alter interval

Purpose

PurposeThe purpose of the alter interval statement is to change properties of the specified
interval.

Syntax

SyntaxThe syntax for the alter interval statement is

alter [existing] interval intervalname
with WITHITEM {, WITHITEM}

WITHITEM:
base = < none | period >

| dispatch = none
| dispatch = (IVAL_DISPATCHITEM {, IVAL_DISPATCHITEM})
| duration = < none | period >
| embedded = < none | CINTERVALNAME >
| endtime = < none | datetime >
| filter = none
| filter = (CINTERVALNAME {, CINTERVALNAME})
| < noinverse | inverse >
| selection = none
| selection = (IVAL_SELITEM {, IVAL_SELITEM})
| starttime = < none | datetime >
| synctime = datetime
| group = groupname

IVAL_DISPATCHITEM:
dispatchname < active | inactive > IVAL_DISPATCHDEF

CINTERVALNAME:
(intervalname

with WITHITEM {, WITHITEM})
| intervalname

IVAL_SELITEM:
< signed_integer | datetime | datetime - datetime >

67

IVAL_DISPATCHDEF:
none CINTERVALNAME < enable | disable >

| CINTERVALNAME CINTERVALNAME < enable | disable >
| CINTERVALNAME < enable | disable >

Description

Description The alter interval command is used to change an interval definition. For a detailed
description of these options, refer to the create interval statement on page 123.
If the existing keyword has been specified, it is not considered to be an error if the
interval does not exist.

Output

Output This statement returns a confirmation of a successful operation.

68

alter job

Purpose

PurposeThe purpose of the alter job statement is to change properties of the specified job.
This statement is is used by job administrators, jobservers, and by the job itself.

Syntax

SyntaxThe syntax for the alter job statement is

alter job jobid
with WITHITEM {, WITHITEM}

alter job
with WITHITEM {, WITHITEM}

WITHITEM:
< disable | enable >

| < suspend | suspend restrict | suspend local | suspend local restrict >
| cancel
| clear warning
| clone [< resume | suspend >]
| comment = string
| error text = string
| exec pid = pid
| exit code = signed_integer
| exit state = statename [force]
| ext pid = pid
| ignore resource = (id {, id})
| ignore dependency = (jobid [recursive] {, jobid [recursive]})
| kill [recursive]
| nicevalue = signed_integer
| priority = integer
| renice = signed_integer
| rerun [recursive]
| resume
| < noresume | resume in period | resume at datetime >
| run = integer
| state = JOBSTATE

| timestamp = string
| warning = string

69

JOBSTATE:
broken active

| broken finished
| dependency wait
| error
| finished
| resource wait
| running
| started
| starting
| synchronize wait

Description

Description The alter job command is used for several purposes. Firstly, jobservers use this
command to document the progress of a job. All the state transitions a job under-
goes during the time when the job is the responsibility of a jobserver are performed
using the alter job command.
Secondly, some changes such as ignoring dependencies or resources, as well as
changing the priority of a job, are carried out manually by an administrator.
The Exit State of a job in a Pending State can be set by the job itself or by a process
that knows the job ID and key of the job that is to be changed.

cancel The cancel option is used to cancel the addressed job and all non-Final
Children. A job can only be cancelled if neither the job itself nor one of its children
is active. Cancelling a running job will set the job in a cancelling state. The effective
cancel is postponed until the job is finished.
If a Scheduling Entity is dependent upon the cancelled job, it can become unreach-
able. In this case the dependent job does not acquire the Unreachable Exit State
defined in the Exit State Profiles, but is set as having the Job State ”Unreachable”.
It is the operator’s task to restore this job back to the job state ”Dependency Wait”
by ignoring dependencies or even to cancel it.
Cancelled jobs are considered to be just like Final Jobs without a Final Exit. This
means that the parents of a cancelled job become final without taking into consid-
eration the Exit State of the cancelled job. In this case the dependent jobs of the
parents continue running normally.
The cancel option can only be used by users.

comment The comment option is used to document an action or to add a com-
ment to the job. Comments can have a maximum length of 1024 characters. Any
number of comments can be saved for a job.
Some comments are saved automatically. For example, if a job attains a Restartable
State, a log is written to document this fact.

70

error text The error text option is used to write error information about a job.
This can be done by the responsible jobserver or a user. The server can write this
text itself as well.
This option is normally used if the jobserver cannot start the corresponding pro-
cess. Possible cases are where it is not possible to switch to the defined working
directory, if the executable program cannot be found, or when opening the error
log file triggers an error.

exec pid The exec pid option is used exclusively by the jobserver to set the
process ID of the control process within the server.

exit code The exit code option is used by the jobserver to tell the repository
server with which Exit Code the process has finished. The repository server now
calculates the matching Exit State from the Exit State Mapping that was used.

exit state The exit state option is used by jobs in a pending state to set their
state to another value. This is usually a Restartable or Final State.
Alternatively, this option can be used by administrators to set the state of a non-
final job.
If the Force Flag is not being used, the only states that can be set are those which
are theoretically attainable by applying the Exit State Mapping to any Exit Code.
The set state must exist in the Exit State Profile.

ext pid The ext pid option is used exclusively by the jobserver to set the process
ID of the started user process.

ignore resource The ignore resource option is used to revoke individual Re-
source Requests. The ignored resource is then no longer requested.
If the parameters of a resource are being referenced, that resource cannot be ig-
nored.
If invalid IDs have been specified, it is skipped. All other specified resources are
ignored. Invalid IDs in this context are the IDs of resources that are not requested
by the job.
The ignoring of resources is logged.

ignore dependency The ignore dependency option is used to ignore defined
dependencies. If the recursive flag is used, not only do the job or batch ignore the
dependencies, but its children do so as well.

71

kill The kill option is used to submit the defined Kill Job. If no Kill Job has been
defined, it is not possible to forcibly terminate the job from within BICsuite. The job
obviously has to be active, that means it must be running, killed or broken_active.
The last two states are not regular cases. When a Kill Job has been submitted, the
Job State is to_kill. After the Kill Job has terminated, the Job State of the killed job
is set to killed unless it has been completed, in which case it is finished or final.
This means that the job with the Job State killed is always still running and that at
least one attempt has been made to terminate it.

nicevalue The nicevalue option is used to change the priority or the nicevalue
of a job or batch and all of its children. If a child has several parents, any changes
you make can, but do not necessarily have to, affect the priority of the child in the
nicevalue of one of the parents. Where there are several parents, the maximum
nicevalue is searched for.
This means that if Job C has three Parents P1, P2 and P3, whereby P1 sets a nice
value of 0, P2 sets a nicevalue of 10 and P3 a nicevalue of -10, the effective nicevalue
is -10. (The lower the nicevalue the better). If the nicevalue for P2 is changed to -5,
nothing happens because the -10 of P3 is better than -5. If the nicevalue of P3 falls
to 0, the new effective nicevalue for Job C is -5.
The nicevalues can have values between -100 and 100. Values that exceed this range
are tacitly adjusted.

priority The priority option is used to change the (static) priority of a job. Be-
cause batches and milestones are not executed, priorities are irrelevant to them.
Changing the priority only affects the changed job. Valid values lie between 0 and
100. In this case, 100 corresponds to the lowest priority and 0 is the highest priority.
When calculating the dynamic priority of a job, the scheduler begins with the static
priority and adjusts it according to how long the job has already been waiting. If
more than one job has the same dynamic priority, the job with the lowest job ID is
scheduled first.

renice The renice option is similar to the nicevalue option with the difference
that the renice option functions relatively while the nicevalue option functions ab-
solutely. If some batches have a nicevalue of 10, a renice of -5 causes the nicevalue
to rise to 5. (It rises because the lower the number, the higher the priority).

rerun The rerun option is used to restart a job in a Restartable State. If you
attempt to restart a job that is not restartable, an error message is displayed. A
job is restartable if it is in a Restartable State or it has the Job State error or bro-
ken_finished.
If the recursive flag has been specified, the job itself and all its direct and indirect
children that are in a Restartable State are restarted. If the job itself is final, this is

72

not considered to be an error. It is therefore possible to recursively restart batches.

resume The resume option is used to reactivate a suspended job or batch.
There are two ways to do this. The suspended job or batch can either be reacti-
vated immediately or a delay can be set.
A delay can be achieved by specifying either the number of time units for the delay
the time when the job or batch is to be activated.
For details about specifying a time, refer to the overview on page 20. The resume
option can be used together with the suspend option. Here, the job is suspended
and then resumed again after (or at) a specified time.

run The run option is used by the jobserver to ensure that the modified job
matches the current version.
Theoretically, the computer could crash after a job has been started by a jobserver.
To complete the work, the job is manually restarted from another jobserver. After
the first system has been booted, the jobserver can attempt to change the job state to
broken_finished without knowing anything about what happened after the crash.
Using the run option then prevents the wrong state from being set.

state The state option is mainly used by jobservers, but it can also be used by
administrators. It is not recommended to do so unless you know exactly what you
are doing.
The usual procedure is that the jobserver sets the state of a job from starting to
started, from started to running, and from running to finished. In the event of a
crash or any other problems, it is possible for the jobserver to set the job state to
broken_active or broken_finished. This means that the Exit Code of the process is
not available and the Exit State has to be set manually.

suspend The suspend option is used to suspend a batch or job. It always func-
tions recursively. If a parent is suspended, its children are all suspended as well.
The resume option is used to reverse the situation.
The effect of the restrict option is that cwa resume can be done by members of the
group ADMIN only.

timestamp The timestamp option is used by the jobserver to set the times-
tamps of the state transition in keeping with the local time from the perspective
of jobserver.

Output

OutputThis statement returns a confirmation of a successful operation.

73

alter job definition

Purpose

Purpose The purpose of the alter job definition statement is to change properties of the
specified job definition.

Syntax

Syntax The syntax for the alter job definition statement is

alter [existing] job definition folderpath
with WITHITEM {, WITHITEM}

alter [existing] job definition folderpath
AJD_ADD_DEL_ITEM {, AJD_ADD_DEL_ITEM}

WITHITEM:
approval = none

| approval = (OPERATE_APPROVAL {, OPERATE_APPROVAL})
| children = none
| children = (JOB_CHILDDEF {, JOB_CHILDDEF})
| dependency mode = < all | any >
| environment = environmentname
| errlog = < none | filespec [< notrunc | trunc >] >
| footprint = < none | footprintname >
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| kill program = < none | string >
| logfile = < none | filespec [< notrunc | trunc >] >
| mapping = < none |mappingname >
| < nomaster |master >
| nicevalue = < none | signed_integer >
| parameter = none
| parameter = (JOB_PARAMETER {, JOB_PARAMETER})
| priority = < none | signed_integer >
| profile = profilename
| required = none
| required = (JOB_REQUIRED {, JOB_REQUIRED})
| rerun program = < none | string >
| resource = none
| resource = (REQUIREMENT {, REQUIREMENT})
| < noresume | resume in period | resume at datetime >

74

| runtime = integer
| runtime final = integer
| run program = < none | string >
| < nosuspend | suspend >
| timeout = none
| timeout = period state statename
| type = < job |milestone | batch >
| group = groupname
| workdir = < none | string >

AJD_ADD_DEL_ITEM:
add [or alter] children = (JOB_CHILDDEF {, JOB_CHILDDEF})

| add [or alter] parameter = (JOB_PARAMETER {, JOB_PARAMETER})
| add [or alter] required = (JOB_REQUIRED {, JOB_REQUIRED})
| add [or alter] resource = (REQUIREMENT {, REQUIREMENT})
| alter [existing] children = (JOB_CHILDDEF {, JOB_CHILDDEF})
| alter [existing] parameter = (JOB_PARAMETER {, JOB_PARAMETER})
| alter [existing] required = (JOB_REQUIRED {, JOB_REQUIRED})
| alter [existing] resource = (REQUIREMENT {, REQUIREMENT})
| delete [existing] children = (folderpath {, folderpath})
| delete [existing] parameter = (parmlist)
| delete [existing] required = (folderpath {, folderpath})
| delete [existing] resource = (RESOURCEPATH {, RESOURCEPATH})

OPERATE_APPROVAL:
OPERATE_PRIV APPROVAL_MODE [leading]

JOB_CHILDDEF:
JCD_ITEM { JCD_ITEM}

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute

75

| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit
| suspend
| use
| view

JOB_PARAMETER:
parametername [(id)] < [JP_WITHITEM] [default = string] | JP_NONDEFWITH >
[local] [< export = parametername | export = none >]

JOB_REQUIRED:
JRQ_ITEM { JRQ_ITEM}

REQUIREMENT:
JRD_ITEM { JRD_ITEM}

RESOURCEPATH:
identifier {. identifier}

OPERATE_PRIV:
cancel

| clear warning
| clone
| edit parameter
| enable
| ignore resource
| ignore dependency
| kill
| priority
| rerun
| set job status

76

| set state
| suspend

APPROVAL_MODE:
approve

| default
| master
| no
| parent
| review

JCD_ITEM:
alias = < none | aliasname >

| condition = < none | string >
| < enable | disable >
| folderpath . jobname
| ignore dependency = none
| ignore dependency = (dependencyname {, dependencyname})
| interval = < none | intervalname >
| < childsuspend | suspend | nosuspend >
| merge mode = < nomerge |merge local |merge global | failure >
| mode = < and | or >
| nicevalue = < none | signed_integer >
| priority = < none | signed_integer >
| < noresume | resume in period | resume at datetime >
| < static | dynamic >
| translation = < none | transname >

JP_WITHITEM:
import [unresolved]

| parameter
| reference child folderpath (parametername)
| reference folderpath (parametername)
| reference resource identifier {. identifier} (parametername)
| result

JP_NONDEFWITH:
constant = string

| JP_AGGFUNCTION (parametername)

77

JRQ_ITEM:
condition = < none | string >

| dependency dependencyname
| expired = < none | signed_period_rj >
| folderpath . jobname
| mode = < all final | job final >
| resolve = < internal | external | both >
| select condition = < none | string >
| state = none
| state = (JRQ_REQ_STATE {, JRQ_REQ_STATE})
| state = all reachable
| state = default
| state = unreachable
| unresolved = JRQ_UNRESOLVED

JRD_ITEM:
amount = integer

| expired = < none | signed_period >
| < nokeep | keep | keep final >
| condition = < string | none >
| lockmode = LOCKMODE

| nosticky
| identifier {. identifier}
| state = none
| state = (statename {, statename})
| state mapping = < none | rsmname >
| sticky
[(< identifier | folderpath | identifier , folderpath | folderpath , identifier >)]

JP_AGGFUNCTION:
avg

| count
| max
| min
| sum

JRQ_REQ_STATE:
statename [< condition = string | condition = none >]

JRQ_UNRESOLVED:

78

defer
| defer ignore
| error
| ignore
| suspend

LOCKMODE:
n

| s
| sc
| sx
| x

Description

DescriptionThe alter job definition command has two different variants.

• The first is similar to the create job definition statement and is used to redefine
the job definition. All the affected options are overwritten. All the unad-
dressed options remain as they are.

• The second variant is used to add, edit or delete entries from the lists of chil-
dren, resource requests, dependencies or parameters.

The options are described in detail in the create job definition command on page 130.
This also applies for the options in the child, resource request, dependency and
parameter definitions.
If the existing keyword is being used, an error is not triggered if the addressed job
definition does not exist. The same applies if the existing keyword is being used
while the list entries are being deleted or edited.

Output

OutputThis statement returns a confirmation of a successful operation.

79

alter named resource

Purpose

Purpose The purpose of the alter named resource statement is to change its properties.

Syntax

Syntax The syntax for the alter named resource statement is

alter [existing] named resource identifier {. identifier}
with WITHITEM {, WITHITEM}

WITHITEM:
group = groupname [cascade]

| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| parameter = none
| parameter = (PARAMETER {, PARAMETER})
| state profile = < none | rspname >

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit

80

| suspend
| use
| view

PARAMETER:
parametername constant = string

| parametername local constant [= string]
| parametername parameter [= string]

Description

DescriptionThe alter named resource statement is used to change the properties of the Named
Resource. For a detailed description of the options, refer to the description of the
create named resource statement on page 150.
If the existing keyword has been specified, attempting to modify a non-existent
Named Resource will not trigger an error.

Output

OutputThis statement returns a confirmation of a successful operation.

81

alter resource

Purpose

Purpose The purpose of the alter resource statement is to change properties of resources.

Syntax

Syntax The syntax for the alter resource statement is

alter [existing] RESOURCE_URL [with WITHITEM {, WITHITEM}]

RESOURCE_URL:
resource identifier {. identifier} in folderpath

| resource identifier {. identifier} in serverpath

WITHITEM:
amount = < infinite | integer >

| < online | offline >
| parameter = none
| parameter = (PARAMETER {, PARAMETER})
| requestable amount = < infinite | integer >
| state = statename
| touch [= datetime]
| group = groupname

PARAMETER:
parametername = < string | default >

Description

Description The alter resource statement is used to change the properties of resources. For
a detailed description of the options, refer to the description of the create resource
statement on page 154.
If the existing keyword has been specified, attempting to modify a non-existent
resource will not trigger an error.

Output

Output This statement returns a confirmation of a successful operation.

82

alter resource state mapping

Purpose

PurposeThe purpose of the alter resource state mapping statement is to change properties
of the mapping.

Syntax

SyntaxThe syntax for the alter resource state mapping statement is

alter [existing] resource state mapping mappingname
with map = (WITHITEM {, WITHITEM})

WITHITEM:
statename maps < statename | any > to statename

Description

DescriptionThe alter resource state mapping statement is used to change the properties of the
Resource State Mapping. For a detailed description of the options, refer to the
description of the create resource state mapping statement on page 158.
If the existing keyword has been specified, attempting to modify a non-existent
Resource State Mapping will not trigger an error.

Output

OutputThis statement returns a confirmation of a successful operation.

83

alter resource state profile

Purpose

Purpose The purpose of the alter resource state profile statement is to change properties of
the specified resource state profile.

Syntax

Syntax The syntax for the alter resource state profile statement is

alter [existing] resource state profile profilename
with WITHITEM {, WITHITEM}

WITHITEM:
initial state = statename

| state = (statename {, statename})

Description

Description The alter resource state profile statement is used to change the properties of the
Resource State Profile. For a detailed description of the options, refer to the de-
scription of the resource state profile statement on page 159.
If the existing keyword has been specified, attempting to modify a non-existent
Resource State Profile does not return an error.

Output

Output This statement returns a confirmation of a successful operation.

84

alter schedule

Purpose

PurposeThe purpose of the alter schedule statement is to change properties of the specified
schedule.

Syntax

SyntaxThe syntax for the alter schedule statement is

alter [existing] schedule schedulepath
with WITHITEM {, WITHITEM}

WITHITEM:
< active | inactive >

| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| interval = < none | intervalname >
| time zone = string
| group = groupname

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit

85

| suspend
| use
| view

Description

Description The alter schedule statement is used to change the properties of a schedule. For
a detailed description of the options for the create schedule statement, refer to page
160.
If the existing keyword has been specified, attempting to modify a non-existent
schedule will not trigger an error.

Output

Output This statement returns a confirmation of a successful operation.

86

alter scheduled event

Purpose

PurposeThe purpose of the alter scheduled event statement is to change properties of the
specified scheduled event.

Syntax

SyntaxThe syntax for the alter scheduled event statement is

alter [existing] scheduled event schedulepath . eventname
with WITHITEM {, WITHITEM}

WITHITEM:
< active | inactive >

| backlog handling = < last | all | none >
| calendar = < active | inactive >
| horizon = < none | integer >
| suspend limit = < default | period >
| group = groupname

Description

DescriptionThe alter scheduled event statement is used to change the properties of a specified
Scheduled Event. For a detailed description of the options for the create scheduled
event statement, refer to page 162.
If the existing keyword has been specified, attempting to modify a non-existent
Scheduled Event does not return an error.

Output

OutputThis statement returns a confirmation of a successful operation.

87

alter scope

Purpose

Purpose The purpose of the alter scope statement is to change the properties of the speci-
fied scope.

Syntax

Syntax The syntax for the alter scope statement is

alter [existing] < scope serverpath | jobserver serverpath >
with JS_WITHITEM {, JS_WITHITEM}

alter [existing] jobserver
with < fatal | nonfatal > error text = string

alter [existing] jobserver
with dynamic PARAMETERS

JS_WITHITEM:
config = none

| config = (CONFIGITEM {, CONFIGITEM})
| < enable | disable >
| error text = < none | string >
| group = groupname [cascade]
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| node = nodename
| parameter = none
| parameter = (PARAMETERITEM {, PARAMETERITEM})
| password = string
| rawpassword = string [salt = string]

PARAMETERS:
parameter = none

| parameter = (PARAMETERSPEC {, PARAMETERSPEC})

88

CONFIGITEM:
parametername = none

| parametername = (PARAMETERSPEC {, PARAMETERSPEC})
| parametername = < string | number >

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit
| suspend
| use
| view

PARAMETERITEM:
parametername = dynamic

| parametername = < string | number >

PARAMETERSPEC:
parametername = < string | number >

Description

DescriptionThe alter scope command is a user command. This command is used to modify
the configuration or other properties of a scope.

89

Output

Output This statement returns a confirmation of a successful operation.

90

alter server

Purpose

PurposeThe purpose of the alter server statement is to enable or disable user connections,
or to define the trace level.

Syntax

SyntaxThe syntax for the alter server statement is

alter server with < enable | disable > connect

alter server with schedule

alter server with trace level = integer

alter server with < suspend | resume > integer

Description

DescriptionThe alter server command can be used to activate and deactivate the ability to
connect to the server. If this possibility has been deactivated, only the "System"
user can connect to the server.
The alter server command is also used to define the logged server message types.
The following information types are defined:

Type Meaning
Fatal A fatal error has occurred. The server is being

run down.
Error An error has occurred.
Info An important informational message that was

not written due to an error.
Warning A warning.
Message An informative message.
Debug Messages that can be used for troubleshooting.

Fatal messages, error messages and info messages are always written to the server
log file. Warnings are written at Trace Level 1 or higher. Normal messages are
written at Trace Level 2 or higher. Debug messages provide a large volume of
output data and are returned at Trace Level 3.
The schedule option is used to make a scheduling thread execute a full reschedule.
The suspend/resume option can be used to suspend or resume internal threads.

91

Output

Output This statement returns a confirmation of a successful operation.

92

alter session

Purpose

PurposeThe purpose of the alter session statement is to specify the used protocol, the
session timeout value or the trace level for the specified session.

Syntax

SyntaxThe syntax for the alter session statement is

alter session [sid]
with WITHITEM {, WITHITEM}

alter session set user = username [with WITHITEM {, WITHITEM}]

alter session set user = username for username [with WITHITEM {,
WITHITEM}]

alter session set user is default

WITHITEM:
command = (sdms-command {; sdms-command})

| method = string
| protocol = PROTOCOL

| session = string
| timeout = integer
| token = string
| < trace | notrace >
| trace level = integer

PROTOCOL:
json [ZERO TERMINATED]

| line
| perl [ZERO TERMINATED]
| python [ZERO TERMINATED]
| serial
| xml

Description

DescriptionThe alter session command can be used to enable and disable the trace. If the trace
is enabled, all the issued commands are logged in the log file. A communication

93

protocol can also be selected. An overview of the currently defined protocols is
shown in the table below.

Protokoll Meaning
Line Plain ASCII output
Perl The output is offered as a Perl structure that can

be easily evaluated by the Perl script using eval.
Python Like Perl, but this is a Python structure.
Serial Serialized Java objects.
Xml Outputs an xml structure.

The timeout parameter for the session can be set as a last resort. A timeout of 0
means that no timeout is active. Any number greater than 0 indicates the number
of seconds after which a session is automatically disconnected.
The second form of the alter session statement can be used by members of the group
ADMIN only. It is used to temporarily change the user and the corresponding
privileges of the session. The third form of the statements resets the user and the
privileges to their original values.

Output

Output This statement returns a confirmation of a successful operation.

94

alter trigger

Purpose

PurposeThe purpose of the alter trigger statement is to change properties of the specified
trigger.

Syntax

SyntaxThe syntax for the alter trigger statement is

alter [existing] trigger triggername on TRIGGEROBJECT [< noinverse |
inverse >]
with WITHITEM {, WITHITEM}

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath

WITHITEM:
< active | inactive >

| check = period
| condition = < none | string >
| < nowarn | warn >
| event = (CT_EVENT {, CT_EVENT})
| group event
| limit state = < none | statename >
| main none
| main folderpath
| < nomaster |master >
| parameter = none
| parameter = (identifier = expression {, identifier = expression})
| parent none
| parent folderpath
| rerun
| < noresume | resume in period | resume at datetime >
| single event
| state = none
| state = (< statename {, statename} |

CT_RSCSTATUSITEM {, CT_RSCSTATUSITEM} >)

95

| submit after folderpath
| submit folderpath
| submitcount = integer
| < nosuspend | suspend >
| [type =] CT_TRIGGERTYPE

| group = groupname

CT_EVENT:
< create | change | delete >

CT_RSCSTATUSITEM:
< statename any | statename statename | any statename >

CT_TRIGGERTYPE:
after final

| before final
| finish child
| immediate local
| immediate merge
| until final
| until finished
| warning

Description

Description The alter trigger statement is used to change the properties of a defined trigger.
If the existing keyword has been specified, changing an existing trigger will not
return an error.
For a detailed description of these options, refer to the create trigger statement on
page 167.

Output

Output This statement returns a confirmation of a successful operation.

96

alter user

Purpose

PurposeThe purpose of the alter user statement is to change properties of the specified
user.

Syntax

SyntaxThe syntax for the alter user statement is

alter [existing] user username
with WITHITEM {, WITHITEM}

alter [existing] user username
ADD_DELITEM {, ADD_DELITEM}

WITHITEM:
connect type = < plain | ssl | ssl authenticated >

| default group = groupname
| < enable | disable >
| equivalent = none
| equivalent = (< username | serverpath > {, < username | serverpath >})
| group = (groupname {, groupname})
| parameter = none
| parameter = (PARAMETERSPEC {, PARAMETERSPEC})
| password = string
| rawpassword = string [salt = string]

ADD_DELITEM:
add [or alter] parameter = (PARAMETERSPEC {, PARAMETERSPEC})

| < add | delete > group = (groupname {, groupname})
| alter [existing] parameter = (PARAMETERSPEC {, PARAMETERSPEC})
| delete [existing] parameter = (parmlist)

PARAMETERSPEC:
parametername = < string | number >

97

Description

Description The alter user statement is used to change the properties of a defined user. If the
existing keyword has been specified, attempting to modify a non-existent user will
not trigger an error.
For a detailed description of these options, refer to the create user statement on page
177.
The second variant of the statement is used to delete or add the user from or to the
specified groups.

Output

Output This statement returns a confirmation of a successful operation.

98

4. connect commands

99

connect

Purpose

Purpose The purpose of the connect statement is to authenticate a user to the server.

Syntax

Syntax The syntax for the connect statement is

connect username identified by string [with WITHITEM {, WITHITEM}]

WITHITEM:
command = (sdms-command {; sdms-command})

| method = string
| protocol = PROTOCOL

| session = string
| timeout = integer
| token = string
| < trace | notrace >
| trace level = integer

PROTOCOL:
json [ZERO TERMINATED]

| line
| perl [ZERO TERMINATED]
| python [ZERO TERMINATED]
| serial
| xml

Description

Description The connect command is used to authenticate the connected process on the server
to. A communication protocol can be optionally specified. The default protocol is
line.
The selected protocol defines the output format. All protocols except for serial
return ASCII output. The protocol serial returns a serialized Java object.
An executable command can also be returned when the connection is established.
In this case, the output of the accompanying command is used as the output for
the connect command. If the command fails, but the connect was successful, the
connection remains active.
An example for all protocols except the serial protocol is given below.

100

line protocol The line protocol only returns an ASCII text as the result from a
command.

connect donald identified by 'duck' with protocol = line;

Connect

CONNECT_TIME : 19 Jan 2005 11:12:43 GMT

Connected

SDMS>

XML protocol The XML protocol returns an XML structure as the result from a
command.

connect donald identified by 'duck' with protocol = xml;
<OUTPUT>
<DATA>
<TITLE>Connect</TITLE>
<RECORD>
<CONNECT_TIME>19 Jan 2005 11:15:16 GMT</CONNECT_TIME></RECORD>
</DATA>
<FEEDBACK>Connected</FEEDBACK>
</OUTPUT>

python protocol The python protocol returns a Python structure that can be
valuated using the Python eval function.

connect donald identified by 'duck' with protocol = python;
{
'DATA' :
{
'TITLE' : 'Connect',
'DESC' : [
'CONNECT_TIME'
],
'RECORD' : {
'CONNECT_TIME' : '19 Jan 2005 11:16:08 GMT'}
}
,'FEEDBACK' : 'Connected'
}

perl protocol The perl protocol returns a Perl structure that can be valuated
using the Perl eval function.

101

connect donald identified by 'duck' with protocol = perl;
{
'DATA' =>
{
'TITLE' => 'Connect',
'DESC' => [
'CONNECT_TIME'
],
'RECORD' => {
'CONNECT_TIME' => '19 Jan 2005 11:19:19 GMT'}
}
,'FEEDBACK' => 'Connected'
}

Output

Output This statement returns a confirmation of a successful operation.

102

5. copy commands

103

copy folder

Purpose

Purpose The purpose of the copy folder statement is to copy a folder including all contents
to some other place in the folder hierarchy.

Syntax

Syntax The syntax for the copy folder statement is

copy FOLDER_OR_JOB {, FOLDER_OR_JOB} to folderpath

copy FOLDER_OR_JOB {, FOLDER_OR_JOB} to foldername

FOLDER_OR_JOB:
[< folder folderpath | job definition folderpath >]

Description

Description If a folder has been copied, every object in the folder is copied as well. If there are
any relationships between objects that were copied as the result of a copy folder ope-
ration (e.g. dependencies, children, triggers, etc.), these are changed accordingly
and mapped to the resulting objects from the copy.
For example, if a folder SYSTEM.X.F containing two jobs A and B, and with SYS-
TEM.X.F.B dependent upon SYSTEM.X.F.A, is copied to the folder SYSTEM.Y, the
newly created job SYSTEM.Y.F.B will be dependent upon the newly created job
SYSTEM.Y.F.A.
Note that if the jobs were copied using a copy job definition command, the new job
SYSTEM.Y.F.B would still be dependent upon SYSTEM.X.F.A. This may not corre-
spond to the user’s view.

Output

Output This statement returns a confirmation of a successful operation.

104

copy named resource

Purpose

PurposeThe purpose of the copy named resource statement is to copy a named resource
into another category.

Syntax

SyntaxThe syntax for the copy named resource statement is

copy named resource identifier {. identifier} to identifier {. identifier}

copy named resource identifier {. identifier} to resourcename

Description

DescriptionThe copy named resource command is used to save a copy of a Named Resource or
an entire category.
If the specified ”target resourcepath” already exists as a category, a Named Re-
source or category with the same name as the source object is created within this
category.
If the specified ”target resourcepath” already exists as a Named Resource, this is
regarded as an error.

Output

OutputThis statement returns a confirmation of a successful operation.

105

copy scope

Purpose

Purpose The purpose of the copy scope statement is to copy a scope including all contents
to some other place within the scope hierarchy.

Syntax

Syntax The syntax for the copy scope statement is

copy < scope serverpath | jobserver serverpath > to serverpath

copy < scope serverpath | jobserver serverpath > to scopename

Description

Description The copy scope command is used to save a copy of entire scopes. This copy also
includes the resource and parameter definitions.
If the specified ”target servicepath” already exists as a scope, a scope with the same
name as the source object is created within this category.
If the specified ”target serverpath” already exists as a jobserver, this is regarded as
an error.
Since a jobserver is only regarded as a special type of scope, it is possible to copy
jobservers using this command. In this case, this command is identical to the copy
jobserver command.

Output

Output This statement returns a confirmation of a successful operation.

106

6. create commands

107

create comment

Purpose

Purpose The purpose of the create comment statement is to store a comment for the speci-
fied object.

Syntax

Syntax The syntax for the create comment statement is

create [or alter] comment on OBJECTURL

with CC_WITHITEM

OBJECTURL:
distribution distributionname for pool identifier {. identifier} in serverpath

| environment environmentname
| exit state definition statename
| exit state mapping mappingname
| exit state profile profilename
| exit state translation transname
| event eventname
| resource identifier {. identifier} in folderpath
| folder folderpath
| footprint footprintname
| group groupname
| interval intervalname
| job definition folderpath
| job jobid
| named resource identifier {. identifier}
| parameter parametername of PARAM_LOC

| resource state definition statename
| resource state mapping mappingname
| resource state profile profilename
| scheduled event schedulepath . eventname
| schedule schedulepath
| resource identifier {. identifier} in serverpath
| < scope serverpath | jobserver serverpath >
| trigger triggername on TRIGGEROBJECT [< noinverse | inverse >]
| user username

108

CC_WITHITEM:
CC_TEXTITEM {, CC_TEXTITEM}

| url = string

PARAM_LOC:
folder folderpath

| job definition folderpath
| named resource identifier {. identifier}
| < scope serverpath | jobserver serverpath >

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath

CC_TEXTITEM:
tag = < none | string > , text = string

| text = string

Description

DescriptionThe create comment statement is used to create the condensed description or the
URL of the description for the object to be commented on.
The optional keyword or alter is used to update the comment (if one exists). If it is
not specified, the presence of a comment will trigger an error.

Output

OutputThis statement returns a confirmation of a successful operation.

109

create environment

Purpose

Purpose The purpose of the create environment statement is to define a set of static named
resources which are needed in the scope a job wants to run.

Syntax

Syntax The syntax for the create environment statement is

create [or alter] environment environmentname [with
ENV_WITH_ITEM]

ENV_WITH_ITEM:
resource = none

| resource = (ENV_RESOURCE {, ENV_RESOURCE})

ENV_RESOURCE:
identifier {. identifier} [< condition = string | condition = none >]

Description

Description The create environment statement is used to define a series of Static Resource Re-
quests which describe the requisite environment that a job needs. Since the envi-
ronments cannot be created by ordinary users, and jobs have to describe the envi-
ronment that they require to run, environments can be used to force jobs to use a
specific jobserver.

Resources The Resources clause is used to specify the Required (Static) Re-
sources. Specified resources that are not static will trigger an error. Since only
static resources are specified, no further information is required. It is permissible to
specify an empty environment (an environment without resource requests). This is
not advisable, though, because it means a loss of control.

Output

Output This statement returns a confirmation of a successful operation.

110

create event

Purpose

PurposeThe purpose of the create event statement is to define an action which can be
executed by the time scheduling engine.

Syntax

SyntaxThe syntax for the create event statement is

create [or alter] event eventname
with EVENT_WITHITEM {, EVENT_WITHITEM}

EVENT_WITHITEM:
action =
submit folderpath [with parameter = (PARAM {, PARAM})]

| group = groupname

PARAM:
parametername = < string | number >

Description

DescriptionThe create event statement is used to define an action that can be scheduled by
the Time Scheduling module. The defined action is the submission of a master
submittable job or batch.

action The submit part of the statement is a restricted variant of the submit
command (see page 414).

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

Output

OutputThis statement returns a confirmation of a successful operation.

111

create exit state definition

Purpose

Purpose The purpose of the create exit state definition statement is to create a symbolic
name for the state of a job.

Syntax

Syntax The syntax for the create exit state definition statement is

create [or alter] exit state definition statename

Description

Description The create exit state definition statement is used to create a symbolic name for the
Exit State of a job, milestone or batch.
The optional keyword or alter is used to prevent error messages from being trig-
gered and the current transaction from being aborted if an Exit State Definition
already exists. This is particularly useful in conjunction with multicommands. If it is
not specified, the existence of an Exit State Definition with the specified name will
trigger an error.

Output

Output This statement returns a confirmation of a successful operation.

Example

Example In the following examples, symbolic names have been created for Job States.

create exit state definition success;
create exit state definition error;
create exit state definition reached;
create exit state definition warning;
create exit state definition wait;
create exit state definition skip;
create exit state definition unreachable;

112

create exit state mapping

Purpose

PurposeThe purpose of the create exit state mapping statement is to create a mapping bet-
ween the numerical exit code of a process and a symbolic exit state.

Syntax

SyntaxThe syntax for the create exit state mapping statement is

create [or alter] exit state mapping mappingname
with map = (statename { , signed_integer , statename })

Description

DescriptionThe create exit state mapping statement defines the mapping of Exit Codes to log-
ical Exit States. The simplest form of this statement only specifies one Exit State.
This means that the job automatically reaches this Exit State after it has finished
regardless of its Exit Code. More complex definitions specify more than one Exit
State and at least one delimitation.

Output

OutputThis statement returns a confirmation of a successful operation.

Example

ExampleThe example below shows a relatively simple, yet realistic mapping of Exit Codes
to logical Exit States.
The statement

create exit state mapping example1
with map = (error,

0, success,
1, warning,
4, error);

defines the following mapping:

Exit Code Exit Code Resultant
Range from Range to Exit State
−∞ -1 error

0 0 success
1 3 warning
4 ∞ error

113

create exit state profile

Purpose

Purpose The purpose of the create exit state profile statement is to define a set of valid exit
states.

Syntax

Syntax The syntax for the create exit state profile statement is

create [or alter] exit state profile profilename
with WITHITEM {, WITHITEM}

WITHITEM:
default mapping = < none |mappingname >

| force
| state = (ESP_STATE {, ESP_STATE})

ESP_STATE:
statename < final | restartable | pending > [OPTION { OPTION}]

OPTION:
batch default

| broken
| dependency default
| disable
| unreachable

Description

Description The create exit state profile statement is used to define a quantity of valid Exit States
for a job, milestone or batch.

default mapping With the default mapping clause it is possible to define which
Exit State Mapping is to be used if no other mapping has been specified. This makes
it considerably easier to create jobs.

force While an Exit State Profile is being created, the force option has no effect
and is ignored. If or alter is specified and the Exit State Profile that you want to
create already exists, the force option delays the integrity check until later.

114

state The state clause defines which Exit State Profiles are valid within this
definition. Each Exit State Definition must be classified as being final, restartable
or pending. If a job has reached the final state it can no longer be started, which
means that the state can no longer change. If a job has reached the restartable state,
it can be started again. This means that the state of such a job can change as well.
pending means that a job cannot be restarted, but it is not final either. The state
must be be set externally.
The order in which the Exit States are defined is relevant. The first specified Exit
State has the highest preference, while the most recently specified Exit State has the
lowest preference. Normally, final states are specified later than restartable states.
A state’s preference is used to decide which state is visible when several different
Exit States of children are merged.
Just one Exit State can be declared as being an unreachable state. This means that
a job, batch or milestone with this profile is mapped to the specified state as soon
as it has become unreachable. This Exit State must be final.
A maximum of one Exit State within a profile can be designated as being a broken
state. This means that a job will reach this state as soon as it has switched to the
error or broken_finished state. This can be handled using a trigger. The Exit State
that is defined as being a broken state must be restartable.
A maximum of one state can be declared as being a batch default state. An empty
batch assumes this status. This allows for an explicit deviation from the standard
behaviour. If no status is designated as being batch default, an empty batch will
automatically assume the final status with the lowest preference that is not desig-
nated as being unreachable. If such a status does not exist, the unreachable state
is also considered a candidate.
Any number of Final States can be designated as dependency default states. De-
pendencies that define a default dependency are fulfilled if the required job as-
sumes one of the states designated as dependency default.

Output

OutputThis statement returns a confirmation of a successful operation.

Example

ExampleThese examples show how the Exit State Profiles example_1 and example_2 are
created.
In the first, very simple example, the Exit State of success is to be a Final State.

create exit state profile example_1
with

state = (success final);

115

In the second example, the Exit State failure is defined as being restartable. This
state has a higher priority than the (final) state success and must therefore be listed
as the first state.

create exit state profile example_2
with

state = (failure restartable,
success final

);

116

create exit state translation

Purpose

PurposeThe purpose of the create exit state translation statement is to create a translation
between child and parent exit states.

Syntax

SyntaxThe syntax for the create exit state translation statement is

create [or alter] exit state translation transname
with translation = (statename to statename {, statename to statename}
)

Description

DescriptionThe create exit state translation statement is used to define a translation between
two Exit State Profiles. Such a translation can be used (but does not have to be) in
parent-child relationships if the two involved Exit State Profiles are incompatible.
The default translation is the identity. This means that Exit States are translated to
Exit States of the same name unless specified otherwise.
It is not possible to translate a Final State to a Restartable State.
If the Exit State translation already exists and the ”or alter” keyword has been
specified, the specified Exit State translation is changed. Otherwise, an already
existing Exit State translation with the same name will trigger an error.

Output

OutputThis statement returns a confirmation of a successful operation.

Example

ExampleIn the following example, the Exit State of the child warning is translated to the
Exit State of the parent skip

create exit state translation example1
with translation = (warning to skip);

117

create folder

Purpose

Purpose The purpose of the create folder statement is to create a container for job definitions
and/or other folders.

Syntax

Syntax The syntax for the create folder statement is

create [or alter] folder folderpath [with WITHITEM {, WITHITEM}]

WITHITEM:
environment = < none | environmentname >

| group = groupname [cascade]
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| parameter = none
| parameter = (parametername = string {, parametername = string})

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit
| suspend

118

| use
| view

Description

DescriptionThis command creates a folder and has the following options:

environment If an environment has been assigned to a folder, every job in the
folder and its subfolders will inherit all the Resource Requests from the Environ-
ment Definition.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

parameter The parameter option can be used to define key/value pairs for the
folder. The complete list of parameters must be specified within a command.

inherit grant The inherit grants clause allows you to define which privileges
are to be inherited through the hierarchy. If this clause is not specified, all privileges
are inherited by default.

Output

OutputThis statement returns a confirmation of a successful operation.

119

create footprint

Purpose

Purpose The purpose of the create footprint statement is to create a set of often used system
resource requirements.

Syntax

Syntax The syntax for the create footprint statement is

create [or alter] footprint footprintname
with resource = (REQUIREMENT {, REQUIREMENT})

REQUIREMENT:
ITEM { ITEM}

ITEM:
amount = integer

| < nokeep | keep | keep final >
| identifier {. identifier}

Description

Description The create footprint command creates a set of Resource Requests which can be re-
used. The Required Resources are all System Resources. The Required Resources
are described by their names, a set with zero by default, and optionally a keep
option.

keep The keep option in a Resource Request defines the time when the resource
is released. The keep option is valid for both System and Synchronizing Resources.
There are three possible values. Their meanings are explained in the table below:

Value Meaning
nokeep The resource is released at the end of the job. This is

the default behaviour.
keep The resource is released as soon as the job has reached

the Final State.
keep final The resource is released when the job and all its chil-

dren are final.

120

amount The amount option is only valid with requests for Named Resources
of the type System or Synchronizing. The amount in a Resource Request expresses
how many units of the Required Resource are allocated.

Output

OutputThis statement returns a confirmation of a successful operation.

121

create group

Purpose

Purpose The purpose of the create group statement is to create an object to which privileges
can be granted.

Syntax

Syntax The syntax for the create group statement is

create [or alter] group groupname [with WITHITEM]

WITHITEM:
user = none

| user = (username {, username})

Description

Description The create group statement is used to create a group. If the ”or alter” keyword
has been specified, an already existing group is changed. Otherwise, an already
existing group is considered an error.

user The user clause is used to specify which users are group members.

Output

Output This statement returns a confirmation of a successful operation.

122

create interval

Purpose

PurposeThe purpose of the create interval statement is to define a periodic or aperiodic
pattern at which events can, must not, be triggered.

Syntax

SyntaxThe syntax for the create interval statement is

create [or alter] interval intervalname [with WITHITEM {, WITHITEM}]

WITHITEM:
base = < none | period >

| dispatch = none
| dispatch = (IVAL_DISPATCHITEM {, IVAL_DISPATCHITEM})
| duration = < none | period >
| embedded = < none | CINTERVALNAME >
| endtime = < none | datetime >
| filter = none
| filter = (CINTERVALNAME {, CINTERVALNAME})
| < noinverse | inverse >
| selection = none
| selection = (IVAL_SELITEM {, IVAL_SELITEM})
| starttime = < none | datetime >
| synctime = datetime
| group = groupname

IVAL_DISPATCHITEM:
dispatchname < active | inactive > IVAL_DISPATCHDEF

CINTERVALNAME:
(intervalname

with WITHITEM {, WITHITEM})
| intervalname

IVAL_SELITEM:
< signed_integer | datetime | datetime - datetime >

123

IVAL_DISPATCHDEF:
none CINTERVALNAME < enable | disable >

| CINTERVALNAME CINTERVALNAME < enable | disable >
| CINTERVALNAME < enable | disable >

Description

Description The intervals are the core of the Time Scheduling. They can regarded as block
patterns. These patterns can be periodic or non-periodic. Within a period (Base)
which, in the case of a non-periodic interval, has a length infinity (∞), there are
blocks of a predetermined length Duration. The last block may be incomplete if the
period length is not an integer multiple of the duration is. The duration can also
have a length∞. This means that the blocks have the same length as the periods.

Duration︷︸︸︷
.︸ ︷︷ ︸

Periode

�
�

Block

Figure 6.1.: How periods and blocks are displayed

It is not necessary for all of the blocks to be actually present. You can choose which
blocks are present. This choice can be made by specifying the block number relative
to the beginning or end of a period (1, 2,3 or −1,−2,−3) or by stating ”from - to”
(all days between 3.4. and 7.6.).
This results in complex patterns as shown in Figure 6.2.

Duration︷︸︸︷
.︸ ︷︷ ︸

Periode

�
�

Block

Figure 6.2.: A more complex pattern

The selection is 1-based, i.e. the first block has the number 1. The last block is
addressed with the number -1. This means that a block 0 does not exist.
Essentially, an interval can be described using the following parameters: Base fre-
quency (period length), duration and selection. Since an interval does not neces-
sarily always have to be valid, a start and end time can still be specified.

Infinite intervals With a non-periodic interval without a duration (infinity), the
start time plays a special role: it then defines the only positive edge of this interval.
Similarly, an end time defines the only negative edge.

124

When a selection is made, this respectively results in blocks being created. The
selection ”-0315T18:40” creates a block from 18:40 to 18:41 every year on March 15.
Selecting blocks using the position (first, second, etc.) is, of course, nonsense. This
is also ignored for infinite intervals.

Inverse If, for example, the time between Christmas and New Year has been
positively defined for a particular purpose, at the moment there is no way to easily
define the complementary time. In this example this is not a serious problem, but
with more complex patterns this incapability will result in complex and error-prone
dual definitions.
For this reason, an Inverse flag has been implemented which causes the specified
selection list to be interpreted complementarily, i.e. only those blocks that would
not have been chosen without a set invert flag are selected. In the case of the last
working day of the month, the inverse flag is set on all working days except for the
last working day of that month.

Filter The selection of blocks can be restricted even further. For example, if
you have defined an interval ”day of the month” (i.e. the base is one month, the
duration is one day) and then selected the second block, such an interval would
have a block on the respective second day of a month. If you want to define this
only for the odd months (January, March, May, etc.), that would not be possible
without a filter function because of the leap years.
The solution to the problem is to define a further interval (month of the year) with
the selection 1, 3, 5, 7, 9, 11. This interval is then specified as a filter for the first
interval.
Here, the first interval only shows a block if the second interval also shows a block
at that ”time”.
If several intervals have been specified as a filter, it is sufficient for one of these
intervals to have a block at the required time (OR). To map an AND relationship
between the filter intervals, the filter intervals are created as a chain (A filters B C
filters, etc.). The order of the filters is not important.

Embedded Unfortunately, the world is not always so simple. In particular, it
is not inconsequential whether you first perform an operation and then make a
selection, or if you have to choose first and then perform the operation. In other
words, there is a big difference if you
talking about the last day of the month - if this is a working day - or about the last
working day of the month.
We obviously also want to include this possibility for making a differentiation in
our model. An embedding functionality has been implemented for this purpose.
Here, we begin by taking over all the parameters for the embedded interval. This
is followed by an evaluation of the selection list. Although it is allowed, select-
ing a ”from - to” period is obviously senseless since this functionality can also be

125

achieved with simple multiplication. Much more interesting is the possibility of
making a relative selection. If the working days in a month are embedded and then
the day −1 is selected, for instance, overall we now have an interval that defines
the last working day of each month. If, on the other hand, the interval with the
working days in a month is multiplied by an interval that returns the last day of a
month, we will only get a hit if the last day of the month is a working day.
Embedding can therefore also be understood as follows: When selecting the blocks,
not all of the embedded blocks are considered (and above all counted), but only the
active blocks.

Synchronisation What have still not been taken into consideration are those
situations involving multiple single periods. A period of 40 days, for example,
could have its rising edge at midnight (00:00) on any day. That is why a synchro-
nisation time (synctime) has been implemented which selects the earliest edge that
is ≥ this point in time. If no such time has been explicitly specified, the date when
the definition was created (create) is used.
Fundamentally, the first block of a period initially starts at its beginning. In cases
where this is not possible (period = ∞, duration > period, Period XOR Duration
have the unit ”week”), the beginning of the period is used as the synchronisation
time. If this is not possible either (period =∞), the normal synchronisation time is
used. The result of this approach is that the first block of a period may be incom-
plete as well (and is then never active).

Dispatcher Although the previous syntax components are extremely powerful
and can describe practically any rhythm, their usage is not always intuitive. This is
not problematic when the interval is created, but it can become a problem during
later maintenance.
The Dispatcher allows the user to develop interval definitions which are much eas-
ier to understand.
As an example, let us assume that a job is to be started at 10:00 on Mondays, but at
09:00 on the other days of the week.
First of all, we develop an interval that is triggered at 10:00 on Mondays:

create or alter interval MONDAY10
with
base = none,
duration = none,
selection = ('T10:00'),
filter = (
(MONDAYS
with
base = 1 week,
duration = 1 day,
selection = (1)
)
);

126

The possibility to define filters and embedded intervals ”inline” can result in a
streamlined definition here.
The interval that is triggered at 09:00 on the other days of the week looks similar to
this:

create or alter interval WEEKDAY09
with
base = none,
duration = none,
selection = ('T09:00'),
filter = (
(WEEKDAYS
with
base = 1 week,
duration = 1 day,
selection = (2, 3, 4, 5)
)
);

The combined interval without a Dispatcher therefore looks like this:

create or alter interval MO10_DI_FR09
with
base = none,
duration = none,
selection = ('T09:00', 'T10:00'),
filter = (MONDAY10, WEEKDAY09);

The two possible times are selected and both filters are evaluated. On Mondays,
only the time 10:00 is let through, on other days only the time 9:00.
The same functionality, but now with a Dispatcher, is easier to understand:

create or alter interval D_MO10_DI_FR09
with
base = none,
duration = none,
filter = none,
selection = none,
dispatch = (
MONDAY_RULE
active
(MONDAYS
with
base = 1 week,
duration = 1 day,
selection = (1)
)
(MONDAY_TIME
with
base = none,
duration = none,

127

selection = ('T10:00')
)
enable,
WEEKDAY_RULE
active
(WEEKDAYS
with
base = 1 week,
duration = 1 day,
selection = (2, 3, 4, 5)
)
(WEEKDAY_TIME
with
base = none,
duration = none,
selection = ('T09:00')
)
enable
);

The requirement is clearly presented in this form, easy to understand and just as
easy to maintain.
The requirement is clearly presented in this form, easy to understand and just as
easy to maintain.
A Dispatcher definition is relatively simple. First of all, it consists of a list of rules.
The order of these rules is meaningful. If two or more rules are "responsible", the
first rule in the list "wins".
In the example above, the WEEKDAYS interval could be changed so that the Mon-
day is selected:

...
WEEKDAY_RULE
active
(WEEKDAYS
with
base = 1 week,
duration = 1 day,
selection = (1, 2, 3, 4, 5)
)
...

But since the first rule MONDAY_RULE is already handling the Monday, the change
would not have any effect.
A Dispatch rule consists of 5 parts. It begins with a name that must comply with the
usual rules for an identifier. The name has no implication, and essentially serves as
a way of clarifying the idea behind the rule. The name (as the name of a rule) must
be unique within the Dispatcher.
The next part is the active flag. If it is set to inactive, no blocks are generated,
respectively all blocks are filtered out. If it is set to active, the Interval filter is
valuated.

128

The third part is the ”Select Interval”. This interval defines the times at which the
rule is valid. If the rule is valid, the Interval value is valuated provided that the
rule is marked as being active.
If the keyword none is entered as the Select Interval, this equates to an infinite
interval without any other properties. In turn, this basically means that it is always
valid.
The fourth part is the ”Filter Interval”. This interval does the actual work. In the
example above, it creates a block with a start time of 09:00 (Mondays).
The Filter Interval can be omitted. Here, too, this equates to an infinite interval
without any other properties. As a driver there are no blocks; as a filter it lets
everything through.
The combination of none as Select Interval and omitting the Filter Interval is not
permissible.
The last part is the enable flag. This switch can be used to enable or disable rules.
If a rule is disabled, it is ignored.

Output

OutputThis statement returns a confirmation of a successful operation.

129

create job definition

Purpose

Purpose The purpose of the create job definition statement is to create a scheduling entity
object which can be submitted, standalone or as part of a larger hierarchy.

Syntax

Syntax The syntax for the create job definition statement is

create [or alter] job definition folderpath . jobname
with WITHITEM {, WITHITEM}

WITHITEM:
approval = none

| approval = (OPERATE_APPROVAL {, OPERATE_APPROVAL})
| children = none
| children = (JOB_CHILDDEF {, JOB_CHILDDEF})
| dependency mode = < all | any >
| environment = environmentname
| errlog = < none | filespec [< notrunc | trunc >] >
| footprint = < none | footprintname >
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| kill program = < none | string >
| logfile = < none | filespec [< notrunc | trunc >] >
| mapping = < none |mappingname >
| < nomaster |master >
| nicevalue = < none | signed_integer >
| parameter = none
| parameter = (JOB_PARAMETER {, JOB_PARAMETER})
| priority = < none | signed_integer >
| profile = profilename
| required = none
| required = (JOB_REQUIRED {, JOB_REQUIRED})
| rerun program = < none | string >
| resource = none
| resource = (REQUIREMENT {, REQUIREMENT})
| < noresume | resume in period | resume at datetime >
| runtime = integer
| runtime final = integer
| run program = < none | string >

130

| < nosuspend | suspend >

| timeout = none
| timeout = period state statename
| type = < job |milestone | batch >

| group = groupname
| workdir = < none | string >

OPERATE_APPROVAL:
OPERATE_PRIV APPROVAL_MODE [leading]

JOB_CHILDDEF:
JCD_ITEM { JCD_ITEM}

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit
| suspend
| use
| view

JOB_PARAMETER:
parametername [(id)] < [JP_WITHITEM] [default = string] | JP_NONDEFWITH >
[local] [< export = parametername | export = none >]

131

JOB_REQUIRED:
JRQ_ITEM { JRQ_ITEM}

REQUIREMENT:
JRD_ITEM { JRD_ITEM}

OPERATE_PRIV:
cancel

| clear warning
| clone
| edit parameter
| enable
| ignore resource
| ignore dependency
| kill
| priority
| rerun
| set job status
| set state
| suspend

APPROVAL_MODE:
approve

| default
| master
| no
| parent
| review

JCD_ITEM:
alias = < none | aliasname >

| condition = < none | string >
| < enable | disable >
| folderpath . jobname
| ignore dependency = none
| ignore dependency = (dependencyname {, dependencyname})
| interval = < none | intervalname >
| < childsuspend | suspend | nosuspend >

| merge mode = < nomerge |merge local |merge global | failure >

| mode = < and | or >

132

| nicevalue = < none | signed_integer >
| priority = < none | signed_integer >
| < noresume | resume in period | resume at datetime >
| < static | dynamic >
| translation = < none | transname >

JP_WITHITEM:
import [unresolved]

| parameter
| reference child folderpath (parametername)
| reference folderpath (parametername)
| reference resource identifier {. identifier} (parametername)
| result

JP_NONDEFWITH:
constant = string

| JP_AGGFUNCTION (parametername)

JRQ_ITEM:
condition = < none | string >

| dependency dependencyname
| expired = < none | signed_period_rj >
| folderpath . jobname
| mode = < all final | job final >
| resolve = < internal | external | both >
| select condition = < none | string >
| state = none
| state = (JRQ_REQ_STATE {, JRQ_REQ_STATE})
| state = all reachable
| state = default
| state = unreachable
| unresolved = JRQ_UNRESOLVED

JRD_ITEM:
amount = integer

| expired = < none | signed_period >
| < nokeep | keep | keep final >
| condition = < none | string >
| lockmode = LOCKMODE

| nosticky

133

| identifier {. identifier}
| state = none
| state = (statename {, statename})
| state mapping = < none | rsmname >
| sticky
[(< identifier | folderpath | identifier , folderpath | folderpath , identifier >)]

JP_AGGFUNCTION:
avg

| count
| max
| min
| sum

JRQ_REQ_STATE:
statename [< condition = string | condition = none >]

JRQ_UNRESOLVED:
defer

| defer ignore
| error
| ignore
| suspend

LOCKMODE:
n

| s
| sc
| sx
| x

Description

Description This command creates or (optionally) modifies job, batch or milestone defini-
tions.
As jobs, batches and milestones have a lot in common, we usually use the following
general technical term "Scheduling Entity" whenever the behaviour is the same for
all three types of Job Definition. The expressions "Job", "Batch" and "Milestone" are
used for Scheduling Entities of the corresponding type Job, Batch and Milestone.
If the "or alter" modifier is used, the command will alter this according to the spec-
ified options if a scheduling entity with the same name already exists.

134

aging The aging describes how quickly the priority is upgraded.

approval The Approval System allows a 4-eyes principle (approval) or at least
a subsequent review to be activated for all important operator actions (cancel, re-
run, enable/disable, set state, ignore dependency, ignore resource, clone, edit pa-
rameter, kill and set job state).
An approval is considered to be more restrictive than a review, as with an approval
the operation is only carried out after it has been approved by an authorised person,
whereas a review only ever takes place after the operation has been carried out.
This can be activated for the entire workflow or just for parts of it. The behaviour
is defined by means of an Approval mode and a Leading flag per operation.
The following Approval modes can be used:

Approval mode Description
APPROVE The action must be approved by an authorised

person.
PARENT The setting for the parent is taken over.
MASTER The setting for the master is taken over if a more

restrictive setting of a leading parent does not
exist. This is the default behaviour.

REVIEW After the action has been performed, a review
is requested unless a more restrictive setting ex-
ists.

NO No restriction unless a more restrictive setting
of a leading parent exists.

If no explicit setting is made at master level, the NO setting applies here. This
means that the Approval System is normally not active.
If Approval (or Review) mode is set for a job or batch without a Leading flag, this
only has an effect on the job or batch itself as well as on all children that have set
PARENT as the mode.
Setting the Leading flag means that the setting of the parent cannot be ignored. It
is taken over unless a more restrictive setting applies.
Ultimately, configuring the system is simple and requires little effort. If no ap-
provals or reviews are required, nothing needs to be done. If approvals or reviews
are required for an entire workflow, the desired mode is set at master level with a
Leading flag. If an approval or review is required for a part of the workflow, this
is set at parent level with a Leading flag. Individual objects can be given their own
setting. The Leading flag causes all objects further down in the hierarchy to take
over at least the setting of the parent. If the Leading flag is missing, the setting is
only passed on to direct children that have specified the PARENT mode.

children The Children section of a job definition statement defines a list of child
objects and is used to build up a hierarchy that enables the modelling of complex

135

job structures.
Whenever a Scheduling Entity is submitted, all the static children are recursively
submitted.
In addition, children that are not static can be submitted during the execution be a
Running Job or Trigger.
The children are then specified using a comma-separated list of Scheduling Entity
path names and additional properties.
The properties of the Child Definitions are described below:
ALIAS This option allows the implementation of the submitted jobs to be kept in-
dependent of the folder structure, and it will function regardless of whether objects
are moved within the folder structure.
The alias for a Child Definition is only used when jobs submit dynamic children.
ENABLE In the parent-child relationship, you can specify whether a child is to be
enabled (default) or disabled. This can either be set unconditionally or dependent
upon the time of the submit or the result of a condition, or even both.
If an interval is specified, the job will be enabled if the submit time would be let
through if the interval were to be used as a filter.
If a job is disabled, it will behave like an empty batch. As soon as all the dependen-
cies have been fulfilled, the job assumes the Exit Status, which is final and the batch
default, or the Final Status with the lowest preference and which can be attained
via an Exit Status Mapping.
IGNORE DEPENDENCY Dependencies of parent jobs are normally inherited by their
children. In some rare situations this is undesirable. In this case the ignore depen-
dency option can be used to ignore such dependencies.
MERGE MODE A single Scheduling Entity can be used as a child of more than one
Parent Scheduling Entity. If two or more such parents are part of a Master Run,
the same children are repeatedly instantiated within this Master Run. This is not
always a desirable situation. Setting the Merge Mode controls how the system
handles this scenario.
The following table gives an overview of the possible Merge Modes and their mean-
ings:

merge mode Description
nomerge A duplicate instance of the Scheduling Entity is cre-

ated. This is the default behaviour.
merge global A duplicate instance is not created. A link is created

between the Parent Submitted Entity and the already
existing Child Submitted Entity.

merge local Like Merge Global, but only Submitted Entities that
were created in a single submit are merged.

failure The submit attempting to create a duplicate Submit-
ted Entity fails.

136

NICEVALUE The nicevalue defines an offset of the priority used to calculate the
priorities of the child and its children. Values between -100 and 100 are permitted.

PRIORITY The specified priority in a Child Definition overwrites the priority of the
Child Scheduling Entity Definition. Values between 0 (high priority) and 100 (low
priority) are permitted.

TRANSLATION Setting the Exit State Translation for a child results in the Exit State
of the child being translated to an Exit State which is merged in the resultant Exit
State of the Parent Submitted Entity.
If no translation is specified, a Child State that is not at the same time a valid Parent
State is ignored.
If a translation has been specified, all the Child States have to translated to a valid
Parent State.

SUSPEND CLAUSE The child suspend clause defines whether a new Submitted Job
is suspended in the context of this Child Definition.
The table below shows the possible values and their meaning regarding the sus-
pend clause:

suspend clause Description
suspend The child is suspended regardless of the value of the

suspend flag specified in the Child Scheduling Enti-
ties.

nosuspend The child is not suspended regardless of the value
of the suspend flag specified in the Child Scheduling
Entities Definition.

childsuspend The child is suspended if the suspended flag has been
set in the Child Scheduling Entity.

If suspend has been specified, a resume clause can optionally be given as well
which triggers an automatic resume at the specified time or at the end of the speci-
fied interval.
The submit time is taken as the reference for partially qualified points in time. T16:
00 means, therefore, that if the submit time 15:00 has been set, the job will start after
about an hour. If the submit time is later than 16:00, however, the job will wait until
the next day.

DYNAMIC CLAUSE The child dynamic clause defines whether the child is always
automatically submitted by the system when the parent is submitted as well.
Dynamic children are used by Running Jobs in the context of Trigger Definitions
and programmatic submits. To be able to submit a child, this child must be defined
as a dynamic child.
The table below shows the possible values in the dynamic clause and their mean-
ings.

137

dynamic clause Description
static The child is automatically submitted with the parent.
dynamic The child is not automatically submitted with the par-

ent.

Milestones use different semantics for their children. Whenever a Scheduling En-
tity is dynamically submitted in a Master Run that is also a child of a milestone in
the same Master Run, the Submitted Scheduling Entity is bound to this milestone as
a child. This means that a milestone can only be final if its dependencies have been
fulfilled and all its children are final. In other words, a Milestone collects child in-
stances that are dynamically submitted by other Submitted Entities and waits until
these Submitted Entities have finished. For this to function correctly, a dependency
of the Submitted Scheduling Entity should be defined.

dependency mode The dependency mode defines which Required Submitted
Entities have to achieve a Final State before the dependent Submitted Entity can
exit the ’Dependency Wait’ System State.
The table below shows the possible Dependency Modes and their meanings.

dependency mode Description
all The Submitted Entity exits the Dependency Wait

State after all the dependencies have been fulfilled.
any The Submitted Entity exits the Dependency Wait

State after at least one dependency has been fulfilled.

environment Each job has to define which environment is needed to execute
the job.
The job can only be executed by jobservers that fulfil all the Static Resource require-
ments listed in the Environment Definition.
The environment option only applies for jobs.

errlog The errlog option defines the file where error outputs (stderr) from the
process to be executed are written.
If the file name is relative, the file is created relative to the working directory of the
job.
This option is only valid for jobs.

footprint Footprints are sets of requirements for System Resources. If several
jobs are defined with similar requirements, this is made that much easier by using
footprints.
The job can only be executed by jobservers that fulfil all the Static Resource require-
ments listed in the Footprint Definition.
The footprint option only applies for jobs.

138

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

inherit grant The inherit grants clause allows you to define which privileges
are to be inherited through the hierarchy. If this clause is not specified, all privileges
are inherited by default.

kill program This option is used to create the possibility for prematurely ter-
minating running processes from within the Scheduling System.
Usually, the kill program contains the PID of the Running Job as a parameter (e.g.
kill -9 ${PID}).
For details about command line parsing, variants and parameter substitutions, re-
fer to the ”run program” option on page 148.

logfile The logfile option defines the file where the standard output (STDOUT)
from the process to be executed is written.
If the file name is relative, the file is created relative to the working directory of the
job.
This option is only valid for jobs.

mapping The mapping option defines the Exit State Mapping that is used to
translate operating system Exit Codes of an executable program to an Exit State. If
a job does not have a mapping, the default Exit State Mapping of the job’s Exit State
Profile is used.
For a detailed description of the Exit State Mapping, refer to the ”create exit state
mapping” command on page 113.

master The master option defines whether this Scheduling Entity can be sub-
mitted in order to create a Master Run.

nicevalue The nicevalue option defines a correction that is used for the calcu-
lation of the priorities for the job and its children. Values between -100 and 100 are
permitted.

parameter The parameters section defines which parameters and input val-
ues are required by a job and how the job exchanges data with other jobs and the
scheduling system.
The parameters can be used in the specification of the Run program, Rerun pro-
gram, Kill program, working directory, log file and error log file, as well as in trig-
gers and Dependency Conditions.

139

A job can also query or set parameters at runtime. Variables that that have been
defined at runtime and not by the job definition are only visible to the job itself
and cannot be referenced. The same is also true, of course, for all variables that are
defined as local as well as for the system variables mentioned below.
Occasionally, however, it is necessary to make one or more of the (e.g.) system
variables known externally. This can be easily done by means of a small trick. If
the value of a parameter contains a character string in the form $something (i.e.
the characters $ followed by a name), this is interpreted as being the name of a
variable, and an attempt is made to resolve this variable in the scope of the object
that delivered the original value for the parameter.
This is how, for example, a job SYSTEM.A can define a constant called MYJOBNAME
with $JOBNAME as its content. If the constant MYJOBNAME is now addressed from
outside the system via a reference, the delivered result is the value SYSTEM.A.
A number of system variables are always defined for each job. These are set by the
system and can be read by the job.

These system variables are:
Name Description
JOBID Submitted entity id for the job
MASTERID Submitted entity id for the Master Job or Batch
KEY ”Password” of the job for connecting to the schedul-

ing system as a job with ”JOBID”
PID The operating system process id of the job. This pa-

rameter is only set for Kill programs.
LOGFILE Name of the log file (stdout)
ERRORLOG Name of the error log file (stderr)
SDMSHOST Host name of the scheduling server
SDMSPORT Listen port of the scheduling server
JOBNAME Name of the job
JOBTAG Child tag for the job is given if the job is being dy-

namically submitted
TRIGGERNAME Name of the trigger
TRIGGERTYPE Type of trigger (JOB_DEFINITION or

NAMED_RESOURCE)
TRIGGERBASE Name of the triggering object that activates the trig-

ger
TRIGGERBASEID ID of the triggering Object Definition that activates

the trigger
TRIGGERBASEJOBID ID of the triggering object that activates the trigger
TRIGGERORIGIN Name of the triggering object that defines the trigger
TRIGGERORIGINID ID of the triggering Object Definition that defines the

trigger
Continued on next page

140

Continued from previous page
Name Description
TRIGGERORIGINJOBID ID of the triggering object that defines the trigger
TRIGGERREASON Name of the triggering object that directly or indi-

rectly activates the trigger
TRIGGERREASONID ID of the triggering Object Definition that directly or

indirectly activates the trigger
TRIGGERREASONJOBID ID of the triggering object that directly or indirectly

activates the trigger
TRIGGERSEQNO Number of times the trigger was activated
TRIGGEROLDSTATE The old state of the object caused by the trigger for

Resource Trigger
TRIGGERNEWSTATE (New) status of the object that causes the trigger to

be activated
SUBMITTIME Submit time
STARTTIME Start time
EXPRUNTIME Expected runtime
JOBSTATE Exit State of the job
MERGEDSTATE Merged Exit State of the job
PARENTID ID of the Parent Job (submission tree)
STATE Current state of the job (Running, Finished, etc.)
ISRESTARTABLE Is the job restartable? 1 = yes, 0 = no
SYNCTIME Time of the transition to Synchronize Wait
RESOURCETIME Time of the transition to Resource Wait
RUNNABLETIME Time of the transition to Runnable
FINISHTIME Finish time
SYSDATE Current date
SEID ID of the job definition
TRIGGERWARNING Text in the warning that activated this trigger
LAST_WARNING Text in the last issued warning. If no current warning

is present, this parameter is empty.
RERUNSEQ The number of reruns until now
SCOPENAME Name of the scope (jobserver) in which the job is run-

ning or last ran

Table 6.1.: List of System Variables
The TRIGGER... system variables are only populated if the job was submitted by a
trigger. For a more detailed description of the TRIGGER... system variables, refer
to the create trigger statement on page 167.
When a job is executed, the parameters used in commands, workdir and file speci-
fications are resolved conform to the sequence given below:

1. System variable

2. The job’s own address space

141

3. The address space of the job and submitting parents, from bottom to top

4. The address space of the jobserver executing the job

5. The address space of the parent scopes of the jobserver executing the job, from
bottom to top

6. The job definition’s parent folders, from bottom to top

7. The parent folders of the parent jobs, from bottom to top

If the configuration parameter ’ParameterHandling’ for the server has been set to
’strict’ (default), accessing variables that are not defined in the job definition will
trigger an error message unless it is a system variable.
If the contents of a variable includes a reference to a another parameter, this param-
eter is evaluated and replaced in the context of the defining job.
The different parameter types and their semantics are described below:
IMPORT Import-type parameters are used to hand over the data for a Job Scheduling
Environment to another job. This type is almost like the parameter type, although
import type parameters cannot be handed over like parameters when a job is sub-
mitted. Import-type parameters can have a default value, which is used if no value
can be acquired from the scheduling environment.
PARAMETER Parameter-type parameters are used to hand over the data from a Job
Scheduling Environment to another job. This type is almost like the import type,
but parameter-type parameters can be handed over as parameters when a job is
submitted. Parameter-type parameters can have a default value, which is used if
no value can be acquired from the scheduling environment.
REFERENCE Reference-type parameters are normally used to hand over results from
one job to another.
The fully qualified name of the job definition and the name of the referencing pa-
rameter are required to create a reference. The Submitted Entity with the closest
match to the job definition of the reference is sought to resolve the reference. If
this allocation cannot be made clearly enough, this triggers an error message. If
a matching Submitted Entity could not be found, the default value (if defined) is
returned.
REFERENCE CHILD Child Reference parameters are used to refer to the parameters
of direct or indirect children. This can be useful for reporting purposes, for exam-
ple. A Child Reference parameter is defined using a fully qualified job definition
name together with the name of the parameter to be qualified. When resolving the
parameter, the Submission Hierarchy is searched downwards instead of upwards
as is the case with Reference Parameters. The behaviour for the resolution is other-
wise identical to the resolution of Reference Parameters.
REFERENCE RESOURCE Resource Reference-type parameters are used to refer to pa-
rameters of allocated resources.

142

This parameter type requires the fully qualified name of a Named Resource to-
gether with an additional parameter name to specify the default reference. The
prerequisite for using a Resource Reference parameter is that the resource is also
requested. The value is determined in the context of the allocated resource.

RESULT Result-type parameters can acquire a value from the job (using the API).
As long as this value has not been set, the optional default value is returned when
the value is queried.

CONSTANT Constant-type parameters are parameters that have a value specified in
the definition. This value can therefore not change during runtime.

LOCAL These variables are only visible from the perspective of the defining job.

priority The priority of a job determines the order in which jobs are executed.
Values between 0 (high priority) and 100 (low priority) are permitted. The priority
option only applies for jobs.

profile The profile defines the Exit State Profile that describes the valid Exit
State of the Scheduling Entity.
For a detailed description of the Exit State Profile, refer to the ”create exit state
profile” command on page 114.

required The required section defines the dependencies of other submitted en-
tities in a Master Run which must be fulfilled until the Submitted Entity is capable
of carrying on running.
Whether all the dependencies have to be fulfilled or just one of them is defined by
the ’dependency’ mode’.
Dependencies are defined in a comma-separated list of fully qualified names of
Scheduling Entities (including folder path names).
Dependencies only apply between the Submitted Entities of the Master Run. Syn-
chronizing Resources have to be used to synchronise the Submitted Entities from
different Master Runs.
After the Submitted Entity instances of the Submitted Scheduling Entity hierarchy
have been created, the system searches for the dependencies as follows: Beginning
with the parent of the dependent Submitted Entity, all the children are searched
for an instance of the Required Scheduling Entity whereby the branch with the de-
pendent Submitted Entity is obviously ignored. If no instance is found, the search
continues in the Submit Hierarchy Parents until precisely one instance has been
found. If an instance can still not be found, the property ’unresolved’ defines how
this situation is handled by the system. If more than one Submitted Entity is found,
the submit fails with an ’ambiguous dependency resolution’ error.
During the execution of a Master Run, a Scheduling Entity can attain an ’unreach-
able’ state because the dependencies can no longer be fulfilled. This can happen if a

143

Required Scheduling Entity reaches a Final State that is not entered in the list of re-
quired states for dependencies or by cancelling a Submitted Entity that is required
by another Submitted Entity. These two cases are handled differently.
If the unreachable situation is caused by a Submitted Entity that finishes with an
unsuitable Exit State, the system determines the Exit State Profile of the dependent
Submitted Entity and sets the Exit State to the state that is marked as being ’un-
reachable’ in the profile.
If none of the Profile States is marked as an unreachable state or the unreachable
state was caused by a Submitted Entity being cancelled, the dependent Submitted
Entity is set to the unreachable state, which can only be resolved by an operator
ignoring the dependency or cancelling the dependent entity.
All the direct or indirect children of a job or batch inherit all the parent’s dependen-
cies. This means that no child of a job or batch can exit the dependency wait state
as long as the parent itself is in this state. Children of milestones do not inherit the
dependencies from their parent.
The properties of the dependency definitions are described below:
CONDITION It is possible to stipulate a condition for a dependency. The depen-
dency is only fulfilled if the evaluation of the condition returns the truth value
”true”. If no condition is specified, the condition is always deemed to have been
fulfilled.
DEPENDENCY NAME A name can be optionally specified for the dependency when
defining a function. Children (both direct and indirect) can refer to the name in
order to ignore this dependency.
MODE The mode property is only relevant if the required Scheduling Entity is a
job with children. In this case, the Dependency Mode defines the time when the
dependency is fulfilled.
The table below shows the possible values and their meanings.

dependency mode Description
all_final The required job and all its children must have

reached a Final State.
job_final Only the required job itself has to reach a Final State,

the state of the children is irrelevant.

STATE The state property of a dependency defines a list of Final States that the
required Scheduling Entity can achieve to fulfil the dependency.
Without this option, the dependency is fulfilled if the required Scheduling Entity
reaches a Final State.
It is also possible to stipulate a condition for a state. If a condition has been spe-
cified, the dependency is only deemed to have been fulfilled if the condition is
fulfilled as well. The syntactic rules for specifying conditions are the same as those
that apply to triggers. For more details, refer to the create trigger statement on page
167. Several implicit definitions are also available as options:

144

• default — The dependency is fulfilled if the predecessor has reached one of
the states that are defined in its profile as being a default dependency.

• all reachable — The dependency is fulfilled if the predecessor has reached
one of the states that are not defined as being unreachable.

• reachable — The dependency is fulfilled if the predecessor has reached the
state defined as being unreachable.

UNRESOLVED The unresolved property specifies how the system should handle a
situation where no Submitted Entity instance could be found during a Submit Op-
eration for a required Scheduling Entity.
The possible behavioural patterns are described in the table below:

unresolved Description
error The submit operation fails with an error message.
ignore The dependency is tacitly ignored.
suspend The dependency is ignored, but the dependent Sub-

mitted Entity is placed in a ’suspended’ state and re-
quires a user action to continue.

defer This option promises that the predecessor will be dy-
namically submitted later.

defer ignore This option expects that the predecessor will be dy-
namically submitted later. If this doesn’t happen, the
dependency will be ignored.

rerun program If a rerun program command line has been defined for a job,
this is executed instead of the run command line when the job is restarted after a
failure.
For details about command line parsing, variants and the substitution parameter,
refer to the ”run program” option on page 148.

resource The resource section of a job definition defines resource requirements
in addition to those requirements indirectly defined by the environment and foot-
print options.
If the same Named Resource as in the footprint is required here, the requirement in
the Resource Section overwrites the requirement in the footprint.
Since environments only require Named Resources with the usage static and foot-
prints only require Named Resources with the usage system, the Resource Section
in a job definition is the only place where resource requirements for Named Re-
sources with the usage synchronizing can be defined.
Resource requirements are defined by the fully qualified path name to a Named
Resource defined with the following additional requirement options:

145

AMOUNT The amount option is only valid with requests for Named Resources of
the type System or Synchronizing. The amount in a Resource Request expresses
how many units of the Required Resource are allocated.
EXPIRED The expired option is only valid for Synchronizing Resources with a de-
fined Resource State Profile. If the expired option is specified, the time to which
the Resource State of the resource has been set cannot be less recent than the time
given by the expire option. A negative Expire value means that a resource must be
at least as old as given here. The Resource State can only be set by the old resource
command (see page 82) or automatically when defining a Resource State Mapping
which converts the Exit State and Resource State into a new Resource State. Even
if, in such a case, the new Resource State is the same as the old Resource State, the
Resource State is considered to have been set.
LOCKMODE The lockmode option in a resource requirement is only valid for Syn-
chronizing Resources. Five possible lockmodes are defined:

Name Meaning
X Exclusive lock
S Shared lock
SX Shared exclusive lock
SC Shared compatible lock
N Nolock

The important aspect here is the compatibility matrix:

X S SX SC N

X N N N N Y
S N Y N Y Y
SX N N Y Y Y
SC N Y Y Y Y
N Y Y Y Y Y

The purpose of the exclusive lock is to have exclusive access to the resource to be
able to set the Resource State and possibly parameter values. A common example
of where the exclusive lock is used is when reloading a database table.
The purpose of the shared lock is to allow other users to use the resource in the
same way while preventing them from making any changes. The most frequent
scenario for using shared locks is for a large-scale ongoing reading of a database
table. Other read processes can simply be tolerated, but no write transactions are
allowed.
The purpose of the shared exclusive lock is to have a second shared lock which is
not compatible with the normal shared lock. If we use the normal use shared lock
for large read transactions, then we use the shared exclusive lock for small write

146

transactions. Small write transactions can easily run in parallel, but if they create a
large read transaction when doing so, they will almost certainly cause a ”snapshot
too old” or other similar problems.
The purpose of the shared compatible lock is to have a shared lock that is compat-
ible with both the shared and exclusive locks. This lock type is intended for short
read transactions which do not conflict with small write transactions or large read
transactions. Small read transactions obviously don’t conflict with other small read
transactions. Running small read and large write transactions in parallel may cause
problems.
The purpose of the nolock is to ensure that the resource exists and that all the other
properties of the resource cover requirements. The resource is not locked and any-
thing can happen, including state changes.
STATE The state option is only valid for Synchronizing Resources with a Resource
State Profile. It is used to specify valid Resource States for this job. A resource can
only be allocated if it is in one of the required states.
STATE MAPPING The state mapping option is only valid for Synchronizing Resources
that specify a Resource State Profile and are requested with an ”exclusive” lock-
mode. The mapping defines a function that maps the combinations of Exit States
and Resource States in a new Resource State. For more detailed information about
resource state mappings, refer to the create resource state mapping statement on
page 158.
KEEP The keep option in a Resource Request defines the time when the resource is
released. The keep option is valid for both System and Synchronizing Resources.
There are three possible values. Their meanings are explained in the table below:

Value Meaning
nokeep The resource is released at the end of the job. This is

the default behaviour.
keep The resource is released as soon as the job has reached

the Final State.
keep final The resource is released when the job and all its chil-

dren are final.

STICKY The sticky option is only valid for Synchronizing Resources. If sticky is
specified, the resource is allocated by the master batch (this is called a MASTER_RE-
SERVATION) for as long as other jobs in the batch that require the sticky resource.
The amount and lockmode for the Master Reservation are derived from all the
sticky requirements of all the children. The amount is the maximum needed by
any job.
The lockmode is exclusive as long as at least two jobs exist which request the re-
source with a lockmode other than nolock. An exception is the combination of
Shared and Shared Compatible lock requests. This combination results in lock-
mode Shared.

147

An attempt is made to fulfil all the requirements from the Master Reservation.
A name can be optionally assigned for the sticky allocation. As a basic principle,
only those requests with the same name are taken into account for the previously
described method. That’s why a master batch can have several MASTER_RESER-
VATIONS at the same time. Several separate critical regions can be realised within
a sequence with the aid of the names.
A parent job or batch can be specified in addition to, or even instead of, the name.
The corresponding instance of the parent is then determined at runtime from the
submission hierarchy. The sticky request is only valid from the parent downwards.
In principle, this can be interpreted as if the parent’s Id represents a part of the
name of the sticky request. This mechanism allows separate critical regions to be
easily implemented in dynamically submitted sub-workflows.

runtime The runtime option is used to define the estimated runtime of a job.
This time can be valuated when activating triggers.

run program The run program command line is mandatory for jobs because it
specifies the command that is to be executed for this job.
The command line is separated by whitespace characters in a command and a list
of arguments. The first element in the command line is regarded as the name of
the executable program that is to be run, and the rest are the parameters for the
program.
Whether the jobserver uses the PATH environment variable when searching for the
executable file is a characteristic of the jobserver.
System and job parameters can be addressed with $ Notation.
Quoting can be used to forward whitespace characters and $ characters as part of
the command line. The quoting complies with Unix Bourne shell rules. This means
that double quotes prevent whitespace characters from being interpreted as sepa-
rators. Single quotes also prevent variables from being resolved. Backticks can be
used for quoting. The parts of the command line that have been quoted in back-
ticks are regarded as having been single quoted, but the backticks remain a part of
the argument. Other quotes are removed.

Example:

The run command line ’sh -c ''example.sh ${JOBID} \$HOME'' '$SHELL'’
will execute the program ’sh’ with the parameters ’-c’, ’example.sh 4711 $HOME’
and ’$SHELL’ (assuming that the Submitted Entity has the ID 4711).
If the executable program (the first element of the command line) is a valid integer,
the command line is not run by the jobserver. Instead, the job is treated as if it
had completed itself with the integer as the Exit Code. Dummy jobs with ’true’
or ’false’ as the program can now be implemented as ’0’ instead of ’true’ or ’1’

148

instead of ’false’ and are therefore processed much more efficiently and quickly by
the system.
Should it really be necessary to run an executable with a number as the name, this
can be achieved by using a path prefix (’./42’ instead of ’42’).

suspend The suspend option defines whether a Submitted Entity is suspended
at the submit time.
If the suspend option is specified, the resume clause can be optionally used. This
can then trigger an automatic resume at or after the specified time.
If the resume time is specified by the incomplete date format (see also page 20), the
resume takes place at the first suitable time after the submit time.
If a submit takes place at 16:00, for example, and T17:30 is entered as the resume
time, the resume will take place on the same day at 17:30. But if T15:55 is specified
as the resume time, the job will have to wait until the next day at 15:55.

timeout The timeout clause of a job definition defines the maximum time for
which the job waits until its resource requirements are fulfilled.
When the timeout condition is reached, the job gets the Exit State specified in the
timeout clause. This Exit State must be an element of the Exit State Profile.
If no timeout option is given, the job will wait until all the requirements have been
fulfilled.

type The type option specifies the Scheduling Entity type that is being created
or modified.

workdir The workdir of a Scheduling Entity-type job defines the directory where
the run, rerun or kill program is executed.

Output

OutputThis statement returns a confirmation of a successful operation.

149

create named resource

Purpose

Purpose The purpose of the create named resource statement is to define a class of resources.

Syntax

Syntax The syntax for the create named resource statement is

create [or alter] named resource identifier {. identifier}
with WITHITEM {, WITHITEM}

WITHITEM:
group = groupname [cascade]

| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| parameter = none
| parameter = (PARAMETER {, PARAMETER})
| state profile = < none | rspname >
| usage = RESOURCE_USAGE

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit

150

| suspend
| use
| view

PARAMETER:
parametername constant = string

| parametername local constant [= string]
| parametername parameter [= string]

RESOURCE_USAGE:
category

| static
| synchronizing
| system

Description

DescriptionThe create named resource statement is used to define classes of resources. These
classes define the name, the usage type and optionally the utilised Resource State
Profile as well as the parameters.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

parameter It may be useful to use its parameters in conjunction with allocat-
ing resources. For example, a resource like RESOURCE.TEMP_SPACE could have a
parameter called LOCATION. This would allow a job to use a resource and allocate
temporary storage space somewhere dependent upon the current instance of the
Named Resource.
There are three types of parameters in a resource context:

Typ Meaning
constant This parameter type defines the value that is constant for

all resources.
local constant This parameter type defines a non-variable parameter

whose value can deviate between instances of the same
Named Resource.

Continues on next page

151

Continued from previous page

Type Meaning
parameter The value of such a parameter can be changed by jobs that

have exclusively locked this resource.

Table 6.2.: Named Resource parameter types

state profile A State Resource Profile can be specified in the case of Synchro-
nizing Resources. This allows jobs to request the resource in a particular state.
Resource State changes can be used to activate triggers.

usage The usage of the Named Resource can be one of the following:

Usage Meaning
category Categories behave like folders and can be used to arrange

the Named Resources in a clearly organised hierarchy.
static Static resources are resources which, if requested, must

be present in the scope in which the job is running but
which cannot be used up. Possible examples of Static Re-
sources are a particular operating system, shared libraries
for DBMS access operations or the presence of a C compiler.

system System Resources are resources that can be counted. Pos-
sible examples are the number of processes, the capacity of
the temporary memory or the availability of (a number of)
tape drives.

synchronizing Synchronizing Resources are the most complex resources
and are used to synchronise multiple access operations.
One possible example is a database table. Multiple access
operations may be tolerated or not depending on the type
of access (large read transactions, large write transactions,
multiple small write transactions, etc.).

pool pool-type Named Resources are used to create so-called Re-
source Pools. These pools allow the distribution of amounts
for System Resources to be regulated centrally and flexibly.

Table 6.3.: Named Resource usage

factor When creating a Named Resource, the factor by which the specified
amounts in a resource request are multiplied can be specified. The default fac-
tor is 1. This factor can be overwritten for each instance of this Named Resource
(i.e. for each resource).

152

inherit grant The inherit grants clause allows you to define which privileges
are to be inherited through the hierarchy. If this clause is not specified, all privileges
are inherited by default.

Output

OutputThis statement returns a confirmation of a successful operation.

153

create resource

Purpose

Purpose The purpose of the create resource statement is to create an instance of a named
resource within a scope, folder or job definition.

Syntax

Syntax The syntax for the create resource statement is

create [or alter] resource identifier {. identifier} in < serverpath |
folderpath > [with WITHITEM {, WITHITEM}]

WITHITEM:
amount = < infinite | integer >

| < online | offline >
| parameter = none
| parameter = (PARAMETER {, PARAMETER})
| requestable amount = < infinite | integer >
| state = statename
| touch [= datetime]
| group = groupname

PARAMETER:
parametername = < string | default >

Description

Description The create resource statement is used to instantiate Named Resources within scopes,
folders or job definitions. In the latter case, only a template is created which is ma-
terialised as soon as the job is submitted and automatically destroyed as soon as
the Master Run is Final or Cancelled.
If the or alter option is specified, an existing resource is changed; otherwise, it is
considered to be an error if the resource already exists.

amount The amount clause defines the Available Amount for this resource.
The amount option is not specified in the case of static resources.

base multiplier The base multiplier is only relevant if the Resource Tracing is
being used. The base multiplier determines the multiplication factor for trace base.
If the trace base is designated as being B and the trace multiplier as being M ,

154

the mean allocation is determined for the periods B ∗ M0, B ∗ M1 and B ∗ M2.
The default value is 600 (10 minutes) so that the values for B, 10B and 100B (in
minutes) are determined.

factor A Resource Factor has been implemented to allow resource requirements
for jobs to be adjusted externally. This can be set in both the Named Resource and
individually in the resource. Whether a job can be allocated a particular resource
is determined by comparing the original request with the Requestable Amount.
However, the actual allocation is taken from

ceil(Requirement ∗ Factor)

.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

online The online clause defines whether the resource is online or offline.
A resource is not available if it is offline. This means that a job that requires this
resource cannot run within this scope. But since the resource can be set to online,
the job will wait and will not be set to an error state.
This also applies to static resources.

parameter The parameter clause is used to set the values of the parameters that
have been defined for the Named Resource.
Parameters that are declared as a constant at Named Resource Level are not permit-
ted here. All the other parameters can be specified, although this is not mandatory.
If a parameter or a default value for this parameter has not been specified at Named
Resource Level, the resolution returns an empty string.
If parameter name = default is specified when changing the resource, the parameter
takes on the default value analogue to the Named Resource.
If the parameter is changed on the Named Resource level, this is visible on the
Resource level for all the parameters that have been set to the default value.
A number of system variables are always defined for each resource. These are set
by the system and are available to jobs which allocate the resource for read access
using ”RESSOURCEREFERENCES”.
These system variables are:

Name Description
STATE The Resource State of a ”synchronizing” re-

source with a state model
Continued on next page

155

Continued from previous page

Name Description
AMOUNT The total amount of available resources
FREE_AMOUNT The total amount of available free resources
REQUESTABLE_AMOUNT The maximum amount that can be allocated by

a job
REQUESTED_AMOUNT The amount requested by the job
TIMESTAMP The touch timestamp of a ”synchronizing” re-

source with a state model

Table 6.4.: List of System Variables

requestable amount The requestable amount clause defines the amount of
this resource that can be requested by a single job. This does not have to be the
same as the available amount. If the requested amount is smaller than the amount,
it is certain that a job cannot allocate all the available resources. If the Requestable
Amount is greater than the amount, jobs can request more than the available amount
without triggering a ”cannot run in any scope” error.
If the Requestable Amount is not specified, it is the same as the amount.
The requestable amount option is not specified in the case of static resources.

state The state clause defines the resource’s state.
This option is only valid for Synchronizing Resources with a Resource State Profile.

tag To facilitate evaluating the trace table, resources and pools can now be
marked with a tag. This tag should be unique within the resources and pools (i.e.
the use of a tag for both a resource and a pool is prohibited as well).

touch The touch clause defines the last time when the status of the resource
(of a job) was changed. This timestamp is not set if a Resource State has been set
manually.
This option is only valid for Synchronizing Resources with a Resource State Profile.

trace base Tracing is deactivated if the trace base is none. Otherwise it is the
basis for the valuation period.

trace interval The trace interval is the minimum time in seconds between when
Trace Records are written. Tracing is deactivated if the trace interval is none.

Output

Output This statement returns a confirmation of a successful operation.

156

create resource state definition

Purpose

PurposeThe purpose of the create resource state definition statement is to create a symbolic
name for a state of a resource.

Syntax

SyntaxThe syntax for the create resource state definition statement is

create [or alter] resource state definition statename

Description

DescriptionThe create resource state definition statement is used to define a symbolic name for
a Resource State.
The optional keyword or alter is used to prevent error messages from being trig-
gered and the current transaction from being aborted if a Resource State Definition
already exists. If it is not specified, the existence of a Resource State Definition with
the specified name will trigger an error.

Output

OutputThis statement returns a confirmation of a successful operation.

Example

ExampleA number of names for Resource States are defined in these examples.

create resource state definition empty;
create resource state definition valid;
create resource state definition invalid;
create resource state definition stage1;
create resource state definition stage2;
create resource state definition stage3;

157

create resource state mapping

Purpose

Purpose The purpose of the create resource state mapping statement is to define a mapping
between the exit states of a job and the resulting resource state of a resource.

Syntax

Syntax The syntax for the create resource state mapping statement is

create [or alter] resource state mapping mappingname
with map = (WITHITEM {, WITHITEM})

WITHITEM:
statename maps < statename | any > to statename

Description

Description The create resource state mapping statement defines the mapping of Exit States in
combination with Resource States to create new Resource States.
The first state name must be an Exit State. The second and third state have to each
be a Resource State. If a job terminates with the given Exit State, the resource state
is set to the new state if the current state matches the first named state. If any is
specified as the initial state, any Resource State is mapped to the new one. If both a
specific mapping and a general mapping have been specified, the specific mapping
has the highest priority.

Output

Output This statement returns a confirmation of a successful operation.

Example

Example
The example shows a mapping that propagates the state of the resource to the next
”PHASE” each time the mapping is applied. Also PHASE1→ PHASE2→ PHASE3
→ PHASE1→ . . .

create or alter resource state mapping 'PHASE_MODEL'
with map = (

'SUCCESS' maps 'PHASE1' to 'PHASE2',
'SUCCESS' maps 'PHASE2' to 'PHASE3',
'SUCCESS' maps 'PHASE3' to 'PHASE1'

);

158

create resource state profile

Purpose

PurposeThe purpose of the create resource state profile statement is to create a set of valid
resource states.

Syntax

SyntaxThe syntax for the create resource state profile statement is

create [or alter] resource state profile profilename
with WITHITEM {, WITHITEM}

WITHITEM:
initial state = statename

| state = (statename {, statename})

Description

DescriptionThe create resource state profile statement is used to define a set of valid Resource
States for a (Named) Resource.

state The state clause defines which Resource State Definitions are valid within
this profile.

initial state The initial state clause determines the initial state of a resource
with this profile. The initial state does not have to be present in the list of states
from the state clause. This allows a resource to be created without it immediately
playing an active role in the system.

Output

OutputThis statement returns a confirmation of a successful operation.

Example

ExampleIn this example, the Exit State is to become invalid if it is empty.

create resource state profile example1
with

state = (empty);

159

create schedule

Purpose

Purpose The purpose of the create schedule statement is to create an active container for
scheduled events.

Syntax

Syntax The syntax for the create schedule statement is

create [or alter] schedule schedulepath [with WITHITEM {, WITHITEM}]

WITHITEM:
< active | inactive >

| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| interval = < none | intervalname >
| time zone = string
| group = groupname

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]
| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit
| suspend

160

| use
| view

Description

DescriptionWith the create schedule statement, complex schedules can be created for jobs and
batches using simple definitions.

active The active option causes the schedule to always trigger events in step
with the specified interval (assuming that any events have been defined). The inac-
tive option, on the other hand, prevents the schedule from triggering events in step
with the specified interval. A hierarchical arrangement of schedules thus allows
exception periods (such as downtimes) to be defined, for example.

Group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

Interval The given interval acts as a ’clock’ for the schedule. If an event is linked
to the schedule, this event is triggered in rhythm with the interval.

inherit grant The inherit grants clause allows you to define which privileges
are to be inherited through the hierarchy. If this clause is not specified, all privileges
are inherited by default.

Output

OutputThis statement returns a confirmation of a successful operation.

161

create scheduled event

Purpose

Purpose The purpose of the create scheduled event is to define a connection between a
schedule and an event.

Syntax

Syntax The syntax for the create scheduled event statement is

create [or alter] scheduled event schedulepath . eventname [with
WITHITEM {, WITHITEM}]

WITHITEM:
< active | inactive >

| backlog handling = < last | all | none >
| calendar = < active | inactive >
| horizon = < none | integer >
| suspend limit = < default | period >
| group = groupname

Description

Description Scheduled Events represent a link between events (what is to be done) and sched-
ules (when should it be done).

backlog handling The backlog handling function indicates how events that
happened during a server downtime are to be handled. The three possible actions
are shown in the table below:

Action Meaning
last Only the last event is triggered
all All the events that happened in the meantime are triggered
none None of the events that happened in the meantime are triggered

Group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

active Scheduled Events can be marked as being active or inactive. If they
are marked as being active, events are triggered. Correspondingly, events are not
triggered if the Scheduled Event is marked as being inactive. This option can be
used to deactivate Scheduled Events without the definition being lost.

162

suspend limit The suspend limit defines the length of the delay before a job
belonging to an event is automatically submitted with the suspend option. A delay
can arise if, for whatever reason, the Scheduling Server goes offline. After the server
has booted up again, events that have happened during the downtime are triggered
dependent upon the backlog handling option. This means that the execution time
is later than the scheduled execution time.

Output

OutputThis statement returns a confirmation of a successful operation.

163

create scope

Purpose

Purpose The purpose of the create scope statement is to create a scope within the scope
hierarchy.

Syntax

Syntax The syntax for the create scope statement is

create [or alter] < scope serverpath | jobserver serverpath > [with
JS_WITHITEM {, JS_WITHITEM}]

JS_WITHITEM:
config = none

| config = (CONFIGITEM {, CONFIGITEM})
| < enable | disable >
| error text = < none | string >
| group = groupname [cascade]
| inherit grant = none
| inherit grant = (PRIVILEGE {, PRIVILEGE})
| node = nodename
| parameter = none
| parameter = (PARAMETERITEM {, PARAMETERITEM})
| password = string
| rawpassword = string [salt = string]

CONFIGITEM:
parametername = none

| parametername = (PARAMETERSPEC {, PARAMETERSPEC})
| parametername = < string | number >

PRIVILEGE:
approve

| cancel
| clear warning
| clone
| create content
| drop
| edit [parameter]

164

| enable
| execute
| ignore resource
| ignore dependency
| kill
| monitor
| operate
| priority
| rerun
| resource
| set job status
| set state
| submit
| suspend
| use
| view

PARAMETERITEM:
parametername = dynamic

| parametername = < string | number >

PARAMETERSPEC:
parametername = < string | number >

Description

DescriptionThe create scope command is used to define a scope or jobserver and its properties.

Config The config option allows a jobserver to be configured using key/value
pairs.
The configuration is inherited downwards so that general configuration parameters
can be set at scope level. This means that they are valid for all the jobservers created
below this level provided that the parameters at the lower level are not overwritten.
When the jobserver logs onto the scheduling server, the server is given the list with
the configuration parameters.

Enable The enable option allows the jobserver to connect to the repository
server. This option is not valid for scopes and is tacitly ignored if it is specified.

Disable The disable option forbids the jobserver from connecting to the reposi-
tory server. This option is not valid for scopes and is tacitly ignored if it is specified.

165

Group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

Node The node specifies the computer on which the jobserver is running. This
field has a purely documentary character.

Parameter Parameters can be used for communication and data transfer pur-
poses between jobs. They are available for use with the jobs and programs that are
executed within the jobs.
The parameters of scopes and jobservers can be used to specify information about
a job’s runtime environment.
A Dynamic Parameter is fulfilled after the jobserver has logged on from within
its own process environment. If the process environment of a jobserver is changed,
attention has to be paid to this Dynamic Variable because otherwise race conditions
can easily arise.

Inherit grant The inherit grants clause allows you to define which privileges
are to be inherited through the hierarchy. If this clause is not specified, all privileges
are inherited by default.

Password The password option is used to set the password for the jobserver.
This option is not valid for scopes and is tacitly ignored if it is specified.

Output

Output This statement returns a confirmation of a successful operation.

166

create trigger

Purpose

PurposeThe purpose of the create trigger statement is to create an object which submits a
job dynamically when a certain condition is met.

Syntax

SyntaxThe syntax for the create trigger statement is

create [or alter] trigger triggername on CT_OBJECT [< noinverse |
inverse >]
with WITHITEM {, WITHITEM}

CT_OBJECT:
job definition folderpath

| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in < folderpath | serverpath >

WITHITEM:
< active | inactive >

| check = period
| condition = < none | string >
| < nowarn | warn >
| event = (CT_EVENT {, CT_EVENT})
| group event
| limit state = < none | statename >
| main none
| main folderpath
| < nomaster |master >
| parameter = none
| parameter = (identifier = expression {, identifier = expression})
| parent none
| parent folderpath
| rerun
| < noresume | resume in period | resume at datetime >
| single event
| state = none
| state = (< statename {, statename} |

CT_RSCSTATUSITEM {, CT_RSCSTATUSITEM} >)

167

| submit after folderpath
| submit folderpath
| submitcount = integer
| < nosuspend | suspend >

| [type =] CT_TRIGGERTYPE

| group = groupname

CT_EVENT:
< create | change | delete >

CT_RSCSTATUSITEM:
< statename any | statename statename | any statename >

CT_TRIGGERTYPE:
after final

| before final
| finish child
| immediate local
| immediate merge
| until final
| until finished
| warning

Description

Description The create trigger statement is used to create an object that waits for a certain event
to happen following which a job or batch is submitted in response to this event.
If the or alter option is specified, an existing trigger is changed; otherwise, it is
considered to be an error if the trigger already exists.
Triggers can be defined for Scheduling Entities or Synchronizing (Named) Resources.
In the latter case, the trigger is valuated every time the state of the resource or in-
stance of the Named Resource changes. Resource Triggers are always so-called
Master Triggers, i.e. they submit a new Master Batch or Master Job. Although trig-
gers in Scheduling Entities can submit Master Batches, by default they submit new
children. These children must be defined as (dynamic) children of the triggering
Scheduling Entities.

active The active option enables the trigger to be activated or deactivated. This
means that the trigger action can be temporarily suppressed without having to
delete the trigger.

168

check The check option is only valid for until final and until finished triggers.
It defines the time intervals between two evaluations of the conditions.
The condition is always evaluated when a job finishes regardless of the defined
intervals.

condition The condition option can be specified to define an additional con-
dition which has to be checked before the trigger is activated. This condition is a
Boolean expression and the trigger is activated if this condition returns true.
BOOLEAN OPERATORS Since this condition is a Boolean expression, Boolean oper-
ators can be used to create multiple complex conditions. This Boolean operators
are:

• not (unary negation operator)

• and

• or

The usual priority rules apply. The ’not’ operator takes priority over the ’and’ op-
erator, which in turn takes priority over the ’or’ operator. Parentheses can be used
to force a valuation sequence.
It is also permitted to use the Boolean constants false and true.
COMPARISON OPERATORS Comparisons can be used as part of Boolean expres-
sions. The following comparison operators are defined.

• == (equal to)

• >= (greater than or equal to)

• <= (less than or equal to)

• ! = (not equal to)

• > (greater than)

• < (less than)

• =∼ (pattern matches)

• ! ∼ (pattern does not match)

All comparison operators can work with strings. With character strings, the ’larger
than’ and ’less than’ operators use the ASCII value of the characters. The matching
operators do not work with numbers.
For a full description of the regular expressions that can be used by the match op-
erators, please refer to the original Java documentation for java.util.regexp.
NUMERIC OPERATORS Since it cannot be guaranteed that decisions cannot only be
made by comparing two values, the use of (numeric) operators is also permitted.
The valid operators are:

169

• + (unary operator)

• − (unary negation operator)

• ∗ (multiplication operator)

• / (division operator)

• % (modulo Operator)

• + (binary addition operator)

• − (binary subtraction operator)

LITERALS AND VARIABLES Literals are numbers (integers and floating point num-
bers) or character strings. Strings are delimited using double quotes ("). It is pos-
sible to use variables that are resolved within the context of the triggering job or
resource. Variables are addressed by prefixing their name with a dollar sign ($).
When a variable is resolved, it is initially assumed that it is a trigger variable. If this
is not the case, it is interpreted as a job variable. This kind of resolution is often, but
unfortunately not always, correct. The prefix job., trigger. or resource., as
well as in the context of dependencies, dependent. and required., can be used
to explicitly specify which object will initiate a search for the variable.
Variables are usually created in uppercase. This can be prevented by quoting the
name. However, the name is converted back to uppercase when addressing the
variables in conditions. To avoid this, the name and prefix (where applicable) have
to be written in braces.
The operands are interpreted as character strings or numbers depending upon the
operator and the first operand. Multiplication, division, modulo and subtraction
operations, as well as unary processes, are only defined for numeric values. The
addition operator in a character string context causes the operands to be strung
together.
FUNCTIONS Not everything can be simply expressed using (numeric) expressions,
and so some additional functions have been added. The following functions are
defined at this time:

• abs(expression) – the absolute value of the expression is returned

• int(expression) – the integer value of the expression is returned

• lowercase(expression) – the result of the expression is converted to lowercase
and returned

• round(expression) – the expression is rounded and returned

• str(expression) – the expression is returned as a character string

170

• substr(source, from [, until]) – returns part of the character string source be-
ginning at the position from up to the end of the string or, if until is spezcified,
up to the position until

• str(expression) – the expression is returned without a space at the end

• uppercase(expression) – the result of the expression is converted to uppercase
and returned

Functions can be nested in one another without any restrictions.
EXAMPLES To clarify this, here are some statements that specify the conditions.
Since conditions are not just found in trigger definitions, some other examples are
given here as well. However, the syntax is always the same.
The first example shows a trigger that is activated when the job state changes to
WARNING or FAILURE after it has already processed some rows ($NUM_ROWS > 0$).

CREATE OR ALTER TRIGGER ON_FAILURE
ON JOB DEFINITION SYSTEM.EXAMPLES.E0100_TRIGGER.TRIGGER

WITH
STATES = (FAILURE, WARNING),
SUBMIT SYSTEM.EXAMPLES.E0100_TRIGGER.ON_FAILURE,
IMMEDIATE MERGE,
ACTIVE,
NOMASTER,
SUBMITCOUNT = 3,
NOWARN,
NOSUSPEND,
CONDITION = '$NUM_ROWS > 0';

The second example shows an environment that requires the value of the resource
variable AVAILABLE to begin with a T (such as TRUE, True, true or Tricky).

CREATE ENVIRONMENT SERVER@LOCALHOST
WITH RESOURCE = (

RESOURCE.EXAMPLES.STATIC.NODE.LOCALHOST
CONDITION = '$RESOURCE.AVAILABLE =~ "[tT].*"',

RESOURCE.EXAMPLES.STATIC.USER.SERVER
);

The third example shows the same as the second one, except that here the parame-
ter name is defined as being mixed case.

CREATE ENVIRONMENT SERVER@LOCALHOST
WITH RESOURCE = (

RESOURCE.EXAMPLES.STATIC.NODE.LOCALHOST
CONDITION = '${RESOURCE.Available} =~ "[tT].*"',

RESOURCE.EXAMPLES.STATIC.USER.SERVER
);

171

event The event option is only relevant for Object Monitor Triggers. It specifies
for which types of events the trigger should be activated.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

main The main option is only relevant for Object Monitor Triggers. If the main
option is specified, the specified job or batch is submitted when the trigger fires.
The actual trigger job must be defined as a child of the main job, unless the parent
option is specified. For each Object Instance that has been changed according to the
trigger specification (newly created, modified or deleted), an instance of the trigger
job is added as a child of the main job. If the master option isn’t specified, the main
job must be defined as a (dynamic) child of the Watcher job. If the master option is
used, the main job must be master submittable.

master The main option is only relevant for Object Monitor Triggers. If the
main option is specified, the specified job or batch is submitted when the trigger
fires. The actual trigger job must be defined as a child of the main job, unless the
parent option is specified. For each Object Instance that has been changed accord-
ing to the trigger specification (newly created, modified or deleted), an instance of
the trigger job is added as a child of the main job. If the master option isn’t spec-
ified, the main job must be defined as a (dynamic) child of the Watcher job. If the
master option is used, the main job must be master submittable.

parameter The parameter option is used to specify parameters for the job that
is to be triggered.
The expressions are valuated in the context of the triggering object. When the trig-
gered job is submitted, the results are then handed over as the value for the speci-
fied parameter.
The syntax of the expressions corresponds to that of the conditions. Not only
Boolean expressions, but also numeric or string-manipulating expressions are nat-
urally allowed as well.
The operands are interpreted numerically or as strings dependent upon the opera-
tor. In case of doubt, the implicit data type of the first operand is definitive.
Some examples of expressions are given below to illustrate this. Here, we assume
that the triggering job has defined some parameters:

$A = "5"
$B = "10"
$C = "hello"
$D = "world"

The following equations apply with these parameters (i.e. as a Condition they
would be valuated as being True):

172

$A + $B == 15
"" + $A + $B == "510"
$A + "0" + $B == 15
$C + " " + $D == "hello world
$A + $C == "5hello"
int("" + $A + $B) * 2 == 1020
$C + ($A + $B) == "hello15"

Errors deliver expressions such as

$C * $A
$C - $D
$B / ($A - 5)

The first two expressions are wrong because $C cannot be interpreted as a numeric
value. In the last expression, an attempt is being made to divide by 0.
If the valuation of an expression runs into an error, the triggering also fails.

parent The parent option is only relevant for Object Monitor Triggers. It can
also only be specified in combination with the main option.
If it is specified, a search is run for the corresponding job (or batch) within the tree
submitted using the main job is sought and the trigger jobs are appended below
the parent.

rerun The rerun option can only react to restartable states and initiate an auto-
matic rerun. In many cases, it will be practicable to also specify the suspend/re-
sume options to allow a certain period of time between the resumes.
Either the submit option or the rerun option have to be specified.

resume The resume option can be used together with the suspend option to
cause a delayed execution. There are two ways to do this. A delay can be achieved
by specifying either the number of time units for the delay the time when the job
or batch is to be activated.
If an incomplete time is defined, such as T16:00,
the time for the trigger activation is taken as the reference time.

state The state option is valid for all triggers apart from until final and until
finished triggers. A list of Exit States can be specified for triggers that act on jobs.
When the job in which the trigger is defined reaches an Exit State that is listed in the
Trigger Definition, this activates the trigger (unless a condition has been specified
that is valuated as false).
A list of state changes can be specified in the case of a trigger that acts on a (Named)
resource. This allows each state change to be explicitly addressed. It is possible to
activate a trigger when a state is exited by using the keyword any on the right. It
is always possible to activate a trigger on reaching a certain state by specifying any
on the left. The state option is omitted to activate a trigger after every state change.

173

submit The submit option defines which job or batch is submitted when the
trigger is activated.
Either the submit option or the rerun option have to be specified.

submitcount The submitcount option is only permitted for triggers that act on
jobs. It defines the number of times that a trigger can be activated. If this option is
not specified, a submitcount of 1 is used.
If a submitcount of 0 is specified, the submitcount is set to the server parameter
TriggerSoftLimit (the default value for this is 50). In the case of a rerun trigger,
however, a submitcount of 0 means that there is no limit to the number of restart
attempts.
If a submitcount greater than the TriggerSoftLimit is specified, the submitcount is
restricted to the server parameter TriggerHardLimit (the default value for this is
100). This is done to avoid endless loops. The TriggerHardLimit can be set in the
server configuration to 231 − 1 in order to virtually eliminate the restriction above.

suspend The suspend option is used to submit the job or batch in a suspend
state. This option is valid for all trigger types.

type There are several types of triggers on jobs. The most important difference
between them is the time at which they are checked. The table below shows a list
of all the types with a brief description of their behaviour.
It must be emphasised that the type option is not valid for (named) resource trig-
gers.

Field Description
Type Check time
after final Only after a final state is reached is a check run

to establish whether the defined trigger has to
be activated. If the trigger is not a Master Trig-
ger, the newly submitted job will have the same
parent as the triggering job. A special situation
arises if the triggering job triggers its own sub-
mit. In this case, the newly submitted job re-
places the triggering job. Since this exchange
takes place before the dependency was checked,
all the dependent jobs wait until the newly sub-
mitted job is final.

Continues on next page

174

Continued from previous page

Field Description
before final Immediately before a final state is reached, a

check is run to establish whether the defined
trigger is to be activated. This is the last oppor-
tunity to submit new children. If this is done,
the job or batch will not reach a Final State at
this time.

finish child A finish child trigger checks whether it is to be
activated every time when a direct or indirect
child finishes.

immediate local The immediate local trigger local checks
whether it has to be activated when a job is
terminated. Only the Exit State of the job is
taken into consideration.

immediate merge The immediate merge trigger checks whether it
has to be activated as soon as the Merged Exit
State changes.

until final The until final trigger periodically checks
whether it has to be activated. This check starts
as soon as a job or batch has been submitted and
does not stop until it is final. The until final trig-
ger imperatively requires a condition. This con-
dition is checked at least once. This check takes
place when the job or batch switches to the fin-
ished state.

until finished The until finished trigger is similar to the final
trigger. The only difference is that the until fin-
ished trigger stops the check as soon as the job is
finished. The until finished trigger imperatively
requires a condition. This condition is checked
at least once. This check takes place when the
job or batch switches to the finished state.

Continues on next page

175

Continued from previous page

Field Description

Table 6.5.: Description of the different types of triggers

Output

Output This statement returns a confirmation of a successful operation.

176

create user

Purpose

PurposeThe purpose of the create user statement is to create a pair of values which can be
used to authenticate oneself to the server.

Syntax

SyntaxThe syntax for the create user statement is

create [or alter] user username
with WITHITEM {, WITHITEM}

WITHITEM:
connect type = < plain | ssl | ssl authenticated >

| default group = groupname
| < enable | disable >
| equivalent = none
| equivalent = (< username | serverpath > {, < username | serverpath >})
| group = (groupname {, groupname})
| parameter = none
| parameter = (PARAMETERSPEC {, PARAMETERSPEC})
| password = string
| rawpassword = string [salt = string]

PARAMETERSPEC:
parametername = < string | number >

Description

DescriptionThe create user statement is used to create a user. If ”or alter” is specified, an
already existing user is changed. Otherwise, an existing user will trigger an error.
The default group clause is used to specify the Default Group.

connect type The connect type clause specifies which kind of connection must
be used by the user to connect to the server.

Value Meaning
plain Every kind of connection is permitted
ssl Only SSL connections are permitted
ssl authenticated Only SSL connections with client authentication are

permitted

177

default group The default group clause defines the group that is used as the
owner for all its objects created by the user if an explicit group was not specified
when the object was created.
The default group must be one of the user’s groups.

enable The enable option allows the user to connect to the repository server.

disable The disable option forbids the user from connecting to the repository
server.

group The group clause is used to specify the groups to which the user belongs.
Every user is a member of the PUBLIC system group.

password The password option is used to set the password for the user.

rawpassword The rawpassword is used to set the user’s password that is re-
quired to connect to the repository server. The rawpassword is the already en-
crypted password.
The rawpassword option has been implemented to be able to dump and restore
users.

Output

Output This statement returns a confirmation of a successful operation.

178

7. deregister commands

179

deregister

Purpose

Purpose The purpose of the deregister statement is to notify the server that the jobserver is
not to process jobs anymore. See also the register statement on page 282.

Syntax

Syntax The syntax for the deregister statement is

deregister serverpath . servername

Description

Description The deregister statement is used to notify the server about a more or less perma-
nent failure of a jobserver.
This message prompts different server actions. Firstly, all the running jobs on the
jobserver (i.e. jobs in the state started, running, to_kill and killed) are set to the
state broken_finished. Jobs in the state starting are reset to runnable. The job-
server is then removed from the list of jobservers that are able to process jobs so
that this jobserver is consequently no longer allocated any more jobs. A side effect
of this is that jobs that can only run on this server due to their resource requirements
are set to the state error with the message ”Cannot run in any scope because of re-
source shortage”. Finally, a complete reschedule is executed so that jobs are redis-
tributed among the jobservers. The jobserver is added to the list of job-processing
jobservers again by re-registering it (refer to the register statement on page 282).

Output

Output This statement returns a confirmation of a successful operation.

180

8. disconnect commands

181

disconnect

Purpose

Purpose The purpose of the disconnect statement is to terminate the server connection.

Syntax

Syntax The syntax for the disconnect statement is

disconnect

Description

Description The connection to the server can be shut down using the disconnect statement.

Output

Output This statement returns a confirmation of a successful operation.

182

9. drop commands

183

drop comment

Purpose

Purpose The purpose of the drop comment statement is to remove the comment.

Syntax

Syntax The syntax for the drop comment statement is

drop [existing] comment on OBJECTURL

OBJECTURL:
distribution distributionname for pool identifier {. identifier} in serverpath

| environment environmentname
| exit state definition statename
| exit state mapping mappingname
| exit state profile profilename
| exit state translation transname
| event eventname
| resource identifier {. identifier} in folderpath
| folder folderpath
| footprint footprintname
| group groupname
| interval intervalname
| job definition folderpath
| job jobid
| named resource identifier {. identifier}
| parameter parametername of PARAM_LOC

| resource state definition statename
| resource state mapping mappingname
| resource state profile profilename
| scheduled event schedulepath . eventname
| schedule schedulepath
| resource identifier {. identifier} in serverpath
| < scope serverpath | jobserver serverpath >
| trigger triggername on TRIGGEROBJECT [< noinverse | inverse >]
| user username

PARAM_LOC:
folder folderpath

| job definition folderpath

184

| named resource identifier {. identifier}
| < scope serverpath | jobserver serverpath >

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath

Description

DescriptionThe drop comment statement deletes the existing comment for the specified object.
If the existing keyword is not specified, the absence of a comment is considered to
be an error.

Output

OutputThis statement returns a confirmation of a successful operation.

185

drop environment

Purpose

Purpose The purpose of the drop environment statement is to remove the specified envi-
ronment.

Syntax

Syntax The syntax for the drop environment statement is

drop [existing] environment environmentname

Description

Description The drop environment statement is used to delete a definition from an environ-
ment. An error is triggered if jobs are still using this environment. If the existing
keyword is being used, it is not considered to be an error if the specified environ-
ment does not exist.

Output

Output This statement returns a confirmation of a successful operation.

186

drop event

Purpose

PurposeThe purpose of the drop event statement is to remove the specified event.

Syntax

SyntaxThe syntax for the drop event statement is

drop [existing] event eventname

Description

DescriptionThe drop environment statement is used to delete a definition of an event. If the
existing keyword is being used, it is not considered to be an error if the specified
event does not exist.
An event cannot be deleted if Scheduled Events belong to it.

Output

OutputThis statement returns a confirmation of a successful operation.

187

drop exit state definition

Purpose

Purpose The purpose of the drop exit state definition statement is to remove the specified
exit state definition.

Syntax

Syntax The syntax for the drop exit state definition statement is

drop [existing] exit state definition statename

Description

Description The drop exit state definition statement is used to delete an Exit State Definition.
It is considered to be an error if Exit State Profiles are still using this Exit State
Definition. If the existing keyword is being used, it is not considered to be an error
if the specified Exit State Definition does not exist.

Output

Output This statement returns a confirmation of a successful operation.

188

drop exit state mapping

Purpose

PurposeThe purpose of the drop exist state mapping statement is to remove the specified
mapping.

Syntax

SyntaxThe syntax for the drop exit state mapping statement is

drop [existing] exit state mapping mappingname

Description

DescriptionThe drop exit state mapping statement is used to delete an Exit State Mapping. It
is considered to be an error if jobs or Exit State Profiles are still using this Exit State
Mapping. If the existing keyword is being used, it is not considered to be an error
if the specified Exit State Mapping does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

189

drop exit state profile

Purpose

Purpose The purpose of the drop exit state profile statement is to remove the specified pro-
file.

Syntax

Syntax The syntax for the drop exit state profile statement is

drop [existing] exit state profile profilename

Description

Description The drop exit state profile statement is used to delete a definition of an Exit State
Profile. It is considered to be an error if jobs are still using this Exit State Profile. If
the existing keyword is being used, it is not considered to be an error if the specified
Exit State Profile does not exist.

Output

Output This statement returns a confirmation of a successful operation.

190

drop exit state translation

Purpose

PurposeThe purpose of the drop exit state translation statement is to remove the specified
exit state translation.

Syntax

SyntaxThe syntax for the drop exit state translation statement is

drop [existing] exit state translation transname

Description

DescriptionThe drop exit state translation statement is used to delete Exit State Translations.
It is considered to be an error if the translation is still being used in parent-child
relationships. If the existing keyword is being used, it is not considered to be an
error if the specified Exit State Translation does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

191

drop folder

Purpose

Purpose The purpose of the drop folder statement is to remove a folder and its contents
from the system.

Syntax

Syntax The syntax for the drop folder statement is

drop [existing] FOLDER_OR_JOB {, FOLDER_OR_JOB} [cascade] [force]

FOLDER_OR_JOB:
[< folder folderpath | job definition folderpath >]

Description

Description The drop folder statement removes folders and their contents from the system.
There are two options:

Cascade The cascade option deletes folders, job definitions and subfolders,
but only if they are not referenced to the job definitions, for example as required
job.

Force With the force option, references to job definitions are removed as well.
Force implies cascade.
Folders cannot be deleted if they are not empty unless cascade or force has been
specified.

Output

Output This statement returns a confirmation of a successful operation.

192

drop footprint

Purpose

PurposeThe purpose of the drop footprint statement is to remove the specified footprint.

Syntax

SyntaxThe syntax for the drop footprint statement is

drop [existing] footprint footprintname

Description

DescriptionThe drop footprint statement is used to delete footprints and resource require-
ments. If the existing keyword is being used, it is not considered to be an error if
the specified footprint does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

193

drop group

Purpose

Purpose The purpose of the drop group statement is to remove a group from the system.

Syntax

Syntax The syntax for the drop group statement is

drop [existing] group groupname

Description

Description The drop group statement is used to delete a group. If there are still any group
members in this group, their membership is automatically terminated.
It is considered to be an error if the group is still the owner of an object.
It is not possible to delete a group that is defined as the Default Group for a user.
If the existing keyword is being used, it is not considered to be an error if the spe-
cified group does not exist.

Output

Output This statement returns a confirmation of a successful operation.

194

drop interval

Purpose

PurposeThe purpose of the drop interval statement is to remove the specified interval.

Syntax

SyntaxThe syntax for the drop interval statement is

drop [existing] interval intervalname

Description

DescriptionThe drop interval statement is used to delete intervals. If the existing keyword is
being used, it is not considered to be an error if the specified interval does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

195

drop job definition

Purpose

Purpose The purpose of the drop job definition statement is to remove the specified schedul-
ing entity object.

Syntax

Syntax The syntax for the drop job definition statement is

drop [existing] job definition folderpath [force]

Description

Description The drop job definition statement deletes the given job definition.
If a job definition is referenced (for instance as Required Job), it cannot be deleted
unless the force option is specified. If the force option is being used, all references
to a job definition are also deleted.

Output

Output This statement returns a confirmation of a successful operation.

196

drop named resource

Purpose

PurposeThe purpose of the drop named resource statement is to delete a class of resources.

Syntax

SyntaxThe syntax for the drop named resource statement is

drop [existing] named resource identifier {. identifier} [cascade]

Description

DescriptionThe drop named resource statement is used to delete Named Resources. It is con-
sidered to be an error if the Named Resource is still instantiated in scopes, job defi-
nitions and/or folders and the cascade option is not specified.
On the other hand, Scope Resources as well as folders and Job Definition Resources
are deleted if the cascade option is specified.
If any requirements exist for the Named Resources that are to be deleted, the state-
ment will fail.
If the existing keyword is being used, it is not considered to be an error if the spe-
cified Name Resource does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

197

drop resource

Purpose

Purpose The purpose of the drop resource statement is to remove an instance of a named
resource from a scope, folder or job definition.

Syntax

Syntax The syntax for the drop resource statement is

drop [existing] RESOURCE_URL [force]

RESOURCE_URL:
resource identifier {. identifier} in folderpath

| resource identifier {. identifier} in serverpath

Description

Description The drop resource statement is used to delete a resource. It is considered to be an
error if the resource is still being allocated by Running Jobs.
If the existing keyword is being used, it is not considered to be an error if the spe-
cified resource does not exist.

Output

Output This statement returns a confirmation of a successful operation.

198

drop resource state definition

Purpose

PurposeThe purpose of the drop resource state definition statement is to remove the defini-
tion.

Syntax

SyntaxThe syntax for the drop resource state definition statement is

drop [existing] resource state definition statename

Description

DescriptionThe drop resource state definition statement is used to delete Resource State Defi-
nitions. It is considered to be an error if Resource State Profiles are still using this
Resource State Definition. If the existing keyword is being used, it is not considered
to be an error if the specified Resource State Definition does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

199

drop resource state mapping

Purpose

Purpose The purpose of the drop resource state mapping statement is to delete the mapping.

Syntax

Syntax The syntax for the drop resource state mapping statement is

drop [existing] resource state mapping mappingname

Description

Description The drop resource state mapping statement is used to delete a Resource State Map-
ping. It is considered to be an error if job definitions are using this Resource State
Mapping. If the existing keyword is being used, it is not considered to be an error
if the specified Resource State Mapping does not exist.

Output

Output This statement returns a confirmation of a successful operation.

200

drop resource state profile

Purpose

PurposeThe purpose of the drop resource state profile statement is to remove a resource
state profile.

Syntax

SyntaxThe syntax for the drop resource state profile statement is

drop [existing] resource state profile profilename

Description

DescriptionThe drop resource state profile statement is used to delete the definition of a Re-
source State Profile. It is considered to be an error if Named Resources are still
using this Resource State Profile. If the existing keyword is being used, it is not
considered to be an error if the specified Resource State Profile does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

201

drop schedule

Purpose

Purpose The purpose of the drop schedule statement is to remove the specified schedule.

Syntax

Syntax The syntax for the drop schedule statement is

drop [existing] schedule schedulepath

Description

Description The drop schedule statement is used to delete schedules. If the existing keyword
is being used, it is not considered to be an error if the specified schedule does not
exist.
A schedule cannot be deleted if it has a Scheduled Event that belongs to it. It cannot
be deleted either if child objects exist.

Output

Output This statement returns a confirmation of a successful operation.

202

drop scheduled event

Purpose

PurposeThe purpose of the drop scheduled event is to remove the specified scheduled
event.

Syntax

SyntaxThe syntax for the drop scheduled event statement is

drop [existing] scheduled event schedulepath . eventname

Description

DescriptionThe drop interval statement is used to delete Scheduled Events. If the existing
keyword is being used, it is not considered to be an error if the specified Schedule
Event does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

203

drop scope

Purpose

Purpose The purpose of the drop scope statement is to remove a scope and its contents
from the scope hierarchy.

Syntax

Syntax The syntax for the drop scope statement is

drop [existing] < scope serverpath | jobserver serverpath > [cascade
]

Description

Description This statement is synonymous to the drop jobserver statement. The cascade option
deletes the scope together with its contents.

Output

Output This statement returns a confirmation of a successful operation.

204

drop trigger

Purpose

PurposeThe purpose of the drop trigger statement is to remove the specified trigger.

Syntax

SyntaxThe syntax for the drop trigger statement is

drop [existing] trigger triggername on TRIGGEROBJECT [< noinverse |
inverse >]

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath

Description

DescriptionThe drop trigger statement is used to delete a trigger.
If the existing keyword is being used, it is not considered to be an error if the spe-
cified trigger does not exist.

Output

OutputThis statement returns a confirmation of a successful operation.

205

drop user

Purpose

Purpose The purpose of the drop user statement is to remove the user from the system.

Syntax

Syntax The syntax for the drop user statement is

drop [existing] user username

Description

Description The drop user statement is used to logically delete a user. If the existing keyword
is being used, it is not considered to be an error if the specified user does not exist.

Output

Output This statement returns a confirmation of a successful operation.

206

10. finish commands

207

finish job

Purpose

Purpose The purpose of the finish job command is to inform the server about the termina-
tion of a job.

Syntax

Syntax The syntax for the finish job statement is

finish job jobid
with exit code = signed_integer

finish job
with exit code = signed_integer

Description

Description The finish job command is used by the jobserver to report the Exit Code for a
process to the server. During the course of repair work, it may be necessary for
an administrator to tell the server in this way that a job has terminated. Jobs can
themselves report that they have finished. To do this, they connect to the server
and use the second form of the statement.

Output

Output This statement returns a confirmation of a successful operation.

208

11. get commands

209

get parameter

Purpose

Purpose The purpose of the get parameter statement is to get the value of the specified
parameter within the context of the requesting job, respectively the specified job.

Syntax

Syntax The syntax for the get parameter statement is

get parameter parametername [< strict | warn | liberal >]

get parameter of jobid parametername [< strict | warn | liberal >]

Description

Description The get parameter statement is used to get the value of the specified parameter
within the context of a job.
The additional option has the following meaning:

Option Meaning
strict The server returns an error if the requested parameter is not explicitly

declared in the job definition.
warn A message is written to the server’s log file when an attempt is made

to determine the value of an undeclared parameter.
liberal An attempt to query an undeclared parameter is tacitly allowed.

The default behaviour depends on the configuration of the server.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
VALUE Value of the requested parameter

Table 11.1.: Description of the output structure of the get parameter statement

210

get submittag

Purpose

PurposeThe purpose of the get submittag statement is to get a (server local) unique iden-
tifier from the server. This identifier can be used to avoid race conditions between
frontend and backend when submitting jobs.

Syntax

SyntaxThe syntax for the get submittag statement is

get submittag

Description

DescriptionThe get submittag statement is used to acquire an identification from the server.
This prevents race conditions between the front end and back end when jobs are
submitted.
Such a situation arises when feedback about the submit does not reach the front
end due to an error. By using a submittag, the front end can safely start a sec-
ond attempt. The server recognises whether the job in question has already been
submitted and responds accordingly. This reliably prevents the job from being sub-
mitted twice.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
VALUE The requested Submit Tag

Table 11.2.: Description of the output structure of the get submittag statement

211

12. kill commands

213

kill session

Purpose

Purpose The purpose of the kill session is to terminate the specified session.

Syntax

Syntax The syntax for the kill session statement is

kill session sid

Description

Description The list session command can be used to display a list of active sessions. The
displayed session Id can be used to terminate the session in question with the kill
session command. Only administrators (i.e. members of the ADMIN group) are
allowed to use this statement. It is not possible to terminate your own session.

Output

Output This statement returns a confirmation of a successful operation.

214

13. link commands

215

link resource

Purpose

Purpose The purpose of the link resource statement is to create a reference to a resource os
another scope.

Syntax

Syntax The syntax for the link resource statement is

link resource identifier {. identifier} in serverpath to < scope
serverpath | jobserver serverpath > [force]

Description

Description With the link resource statement it is possible to make the resource of another
scope visible and usable in a scope. This is necessary if a logical process requires
resources from more than one scope. This is very well the case, for example, with
processes that communicate with a database system.
From the system’s perspective, it can scarcely differentiate between a Resource Link
and the referenced resource. All operations such as allocating, locking, reading or
setting variables take place on the base resource. This means that the link behaves
as if it were the base resource. The only difference lies in the view of the alloca-
tions. With the base resource, all the allocations are shown. With a link, only those
allocations that take place via the link are shown.
It is also possible to set links to links.
The force option can be used to overwrite an existing link. An already existing
resource is deleted and the link is created. These operations are obviously only
possible if the resource or link is not being used, i.e. if there are no allocations or
reservations present.

Output

Output This statement returns a confirmation of a successful operation.

216

14. list commands

217

list calendar

Purpose

Purpose The purpose of the list calendar statement is to get an overview of scheduled jobs.

Syntax

Syntax The syntax for the list calendar statement is

list calendar [with LC_WITHITEM {, LC_WITHITEM}]

LC_WITHITEM:
endtime = datetime

| filter = LC_FILTERTERM {or LC_FILTERTERM}
| starttime = datetime
| time zone = string

LC_FILTERTERM:
LC_FILTERITEM {and LC_FILTERITEM}

LC_FILTERITEM:
(LC_FILTERTERM {or LC_FILTERTERM})

| job . identifier < cmpop | like | not like > RVALUE

| name like string
| not (LC_FILTERTERM {or LC_FILTERTERM})
| owner in (groupname {, groupname})

RVALUE:
expr (string)

| number
| string

Description

Description The list calendar statement gives you a list of all the calendar entries sorted by the
start dates of the executable objects.
If a period is specified, those objects whose start time plus the Expected Final Time
lies in the selected period are also displayed.

218

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
SE_NAME Name of the Scheduling Entity
SE_TYPE Type of the Scheduling Entity (job or batch)
SE_ID Id of the Scheduling Entity
SE_OWNER Owner of the Scheduling Entity
SE_PRIVS Privileges for the Scheduling Entity
SCE_NAME Name of the schedule
SCE_ACTIVE Flag that indicates if the schedule is active
EVT_NAME Name of the event
STARTTIME Start time
EXPECTED_FINAL_TIME Expected date and time the job or batch will

reach a final state
TIME_ZONE The used time zone for date and time display

Table 14.1.: Description of the output structure of the list calendar statement

219

list dependency definition

Purpose

Purpose The purpose of the list dependency definition statement is to get a list of all depen-
dencies of a job definition.

Syntax

Syntax The syntax for the list dependency definition statement is

list dependency definition folderpath

Description

Description The list dependency definition statement gives you a list of all the dependencies of
a job definition.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
SE_DEPENDENT_PATH The folder containing the dependent Schedul-

ing Entity
DEPENDENT_NAME The name of the dependent Scheduling Entity
SE_REQUIRED_PATH The folder containing the required Scheduling

Entity
REQUIRED_NAME The name of the required Scheduling Entity
NAME The object name
UNRESOLVED_HANDLING The Unresolved Handling field describes what

to do if a dependent object instance is not
present in the current Master Batch. The follow-
ing options are available: Ignore, Error and Sus-
pend.

MODE The Dependency Mode states the context in
which the list of dependencies has to be viewed.
The following options are available: ALL and
ANY.

Continued on next page

220

Continued from previous page

Field Description
STATE_SELECTION The State Selection defines how the required

Exit States are determined. The options here are
FINAL, ALL_REACHABLE, UNREACHABLE
and DEFAULT. In the case of FINAL, the re-
quired Exit States can be explicitly listed.

ALL_FINALS This field defines whether the dependency is
already fulfilled when a Final State is reached
(True) or if the required states are explicitly
listed (False).

CONDITION The condition that has to be fulfilled is entered
in the Condition field

STATES This is the list of all the valid Exit States which
the required object must have for the depen-
dency to be fulfilled and so that the dependent
job can start.

RESOLVE_MODE The Resolve Mode defines the context in which
the dependency is to be resolved. The possible
values are:

Value Meaning
internal The dependency is resolved within

the master.
both If possible, the dependency is re-

solved within the master. If this
does not succeed, the search contin-
ues outside the master.

external The dependency is resolved out-
side of the master.

EXPIRED_AMOUNT When resolving an external dependency, the
time when the required job or batch was active
plays a role. The expired amount defines for
how many time units this may lie in the past.

EXPIRED_BASE The expired base defines the time unit for the
expired amount

SELECT_CONDITION The select condition defines a condition that
must be fulfilled so that a job or batch can be
regarded as being a required job.

Table 14.2.: Description of the output structure of the list dependency definition
statement

221

list dependency hierarchy

Purpose

Purpose The purpose of the list dependency hierarchy statement is to get a list of all depen-
dencies of a submitted entity.

Syntax

Syntax The syntax for the list dependency hierarchy statement is

list [condensed] dependency hierarchy jobid [with EXPAND]

EXPAND:
expand = none

| expand = < (id {, id}) | all >

Description

Description The list dependency hierarchy statement gives you a list of all the dependencies of
a Submitted Dependency.

expand The expand option can be used to make the hierarchy visible at chil-
dren level. This is done by specifying in the list the IDs of the nodes whose children
are to be made visible. If none is specified as an expand option, only the level below
the requested node is made visible.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The Id of the Dependency Instance
DD_ID The Id of the Dependency Definition
DEPENDENT_ID This is the Id of the dependent job.
DEPENDENT_NAME This is the fully qualified name of the dependent

job.
REQUIRED_ID This is the Id of the required job.
Continued on next page

222

Continued from previous page

Field Description
REQUIRED_NAME This is the fully qualified name of the required

job.
DEP_STATE This is the current state of the dependency re-

lationship. The following variants are used:
Open, Fulfilled and Filed.

DEPENDENCY_PATH This is a ’;’-separated list of job hierarchies
(parent-child relationships). Each job hierarchy
is a list of path names separated by a colon (’:’).

SE_DEPENDENT_ID The Id of the dependent Scheduling Entity
SE_DEPENDENT_NAME The fully qualified name of the dependent

Scheduling Entity
SE_REQUIRED_ID The Id of the required Scheduling Entity
SE_REQUIRED_NAME The fully qualified name of the required

Scheduling Entity
DD_NAME Name of the Dependency Definition
UNRESOLVED_HANDLING The Unresolved Handling field describes what

to do if a dependent object instance is not
present in the current Master Batch. The follow-
ing options are available: Ignore, Error and Sus-
pend.

MODE States the currently used Dependency Mode
(ALL_FINAL or JOB_FINAL).

STATE_SELECTION The State Selection defines how the required
Exit States are determined. The options here are
FINAL, ALL_REACHABLE, UNREACHABLE
and DEFAULT. In the case of FINAL, the re-
quired Exit States can be explicitly listed.

MASTER_ID This is the Id of the Master Job that was submit-
ted in order to create this runtime object.

SE_TYPE This is the Scheduling Entity type (job, batch or
milestone).

PARENT_ID This is the Id of the parent runtime object that
submitted the current job. If the job does not
have a parent, NONE is displayed here.

PARENT_NAME This is the fully qualified name of the parent
runtime object that submitted the current job.

OWNER The group owning the object
Continued on next page

223

Continued from previous page

Field Description
SCOPE This is the fully qualified name of the jobserver

on which the job was started. If the job has not
yet been started, ’null’ is displayed here.

EXIT_CODE The Exit Code is the exit value that the Run pro-
gram had when the process finished.

PID This is the process Id of the Job Executor.
EXTPID This is the Id of the process that is being exe-

cuted.
JOB_STATE The current Job State
JOB_ESD This is the job’s Exit State. If the job has not yet

finished, ’null’ is displayed here.
FINAL_ESD This is the Merged Exit State.
JOB_IS_FINAL Specifies whether the job is Final (True) or not

(False)
CNT_REQUIRED The number of jobs that are dependent on the

current job if its status is dependency_wait
CNT_RESTARTABLE The number of children in a Restartable state
CNT_SUBMITTED The number of children in a Submitted state
CNT_DEPENDENCY_WAIT The number of children in a Dependcy_Wait

state
CNT_RESOURCE_WAIT The number of children in a Resource_Wait state
CNT_RUNNABLE The number of children in a Runnable state
CNT_STARTING The number of children in a Starting state
CNT_STARTED The number of children in a Started state
CNT_RUNNING The number of children in a Running state
CNT_TO_KILL The number of children in a To_Kill state
CNT_KILLED The number of children in a Killed state
CNT_CANCELLED The number of children in a Cancelled state
CNT_FINAL The number of children in a Final state
CNT_BROKEN_ACTIVE The number of children in a Broken_Active state
CNT_BROKEN_FINISHED The number of children in a Broken_Finished

state
CNT_ERROR The number of children in an Error state
CNT_SYNCHRONIZE_WAIT The number of children in a Synchronize_Wait

state
CNT_FINISHED The number of children in a Finished state
SUBMIT_TS The time when the job was submitted
Continued on next page

224

Continued from previous page

Field Description
SYNC_TS The time when the job switched to the state syn-

chronize_wait
RESOURCE_TS The time when the job switched to the state Re-

source_wait
RUNNABLE_TS The time when the job reached the state

Runnable
START_TS The time when the job was reported by the job-

server as having been started
FINSH_TS The time when the job reached the state Fin-

ished
FINAL_TS The time when the job reached the state Final
ERROR_MSG The error message that was displayed on reach-

ing the state Error
DEPENDENT_ID_ORIG The Id of the object that defined the dependency
DEPENDENCY_OPERATION The Dependency Operation defines whether all

the dependencies (All) or just one single depen-
dency have to be fulfilled.

CHILD_TAG Marker for differentiating between multiple dy-
namically submitted children

CHILDREN The number of the children of the job
REQUIRED The number of dependent jobs
DD_STATES A comma-separated list of the required Exit

States
IS_SUSPENDED This field defines whether the job is suspended

(True) or not (False).
PARENT_SUSPENDED This field defines whether the job is suspended

(True) or not (False) through one of its parents.
CNT_UNREACHABLE The number of children whose dependencies

cannot be fulfilled
DEPENDENT_PATH_ORIG The fully qualified name of the object that de-

fined the dependency
IGNORE Ignore indicates whether this dependency is ig-

nored (True) or not (False)
Continued on next page

225

Continued from previous page

Field Description
RESOLVE_MODE The Resolve Mode defines the context in which

the dependency is to be resolved. The possible
values are:

Value Meaning
internal The dependency is resolved within

the master.
both If possible, the dependency is re-

solved within the master. If this
does not succeed, the search contin-
ues outside the master.

external The dependency is resolved out-
side of the master.

EXPIRED_AMOUNT When resolving an external dependency, the
time when the required job or batch was active
plays a role. The expired amount defines for
how many time units this may lie in the past.

EXPIRED_BASE The expired base defines the time unit for the
expired amount

SELECT_CONDITION The select condition defines a condition that
must be fulfilled so that a job or batch can be
regarded as being a required job.

Table 14.3.: Description of the output structure of the list dependency hierarchy
statement

226

list environment

Purpose

PurposeThe purpose of the list environment statement is to get a list of defined environ-
ments.

Syntax

SyntaxThe syntax for the list environment statement is

list environment

Description

DescriptionThe list environment statement is used to get a list of defined environments that
are visible to the user.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The name of the environment
PRIVS String containing the users privileges on the ob-

ject

Table 14.4.: Description of the output structure of the list environment statement

227

list event

Purpose

Purpose The purpose of the list event statement is to get a list of all defined events.

Syntax

Syntax The syntax for the list event statement is

list event

Description

Description The list event statement creates a list of all the defined events.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
SCHEDULING_ENTITY Batch or job that is submitted when this event

occurs
PRIVS String containing the users privileges on the ob-

ject

Table 14.5.: Description of the output structure of the list event statement

228

list exit state definition

Purpose

PurposeThe purpose of the list exit state definition statement is to get a list of all defined
exit states.

Syntax

SyntaxThe syntax for the list exit state definition statement is

list exit state definition

Description

DescriptionThe list exit state definition statement gives you a list of all the Exit States.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
PRIVS String containing the users privileges on the ob-

ject

Table 14.6.: Description of the output structure of the list exit state definition
statement

229

list exit state mapping

Purpose

Purpose The purpose of the list exit state mapping statement is to get a list of all defined
mappings.

Syntax

Syntax The syntax for the list exit state mapping statement is

list exit state mapping

Description

Description The list exit state mapping statement gives you a list of all the defined mappings.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
PRIVS String containing the users privileges on the ob-

ject

Table 14.7.: Description of the output structure of the list exit state mapping
statement

230

list exit state profile

Purpose

PurposeThe purpose of the list exit state profile statement is to get a list of all defined exit
state profiles.

Syntax

SyntaxThe syntax for the list exit state profile statement is

list exit state profile

Description

DescriptionThe list exit state profile statement gives you a list of all the defined Exit State
Profiles.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
DEFAULT_ESM_NAME The default Exit State Mapping is active if the

job itself does not define something else.
IS_VALID Flag displayed showing the validity of this Exit

State Profile
PRIVS String containing the users privileges on the ob-

ject

Table 14.8.: Description of the output structure of the list exit state profile statement

231

list exit state translation

Purpose

Purpose The purpose of the list exit state translation is to get a list of al defined exit state
translations.

Syntax

Syntax The syntax for the list exit state translation statement is

list exit state translation

Description

Description The list exit state translation statement gives you a list of all the defined Exit State
Translations.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
PRIVS String containing the users privileges on the ob-

ject

Table 14.9.: Description of the output structure of the list exit state translation
statement

232

list folder

Purpose

PurposeThe purpose of the list folder statement is to get a (partial) list of all folders defined
in the system.

Syntax

SyntaxThe syntax for the list folder statement is

list [condensed] folder folderpath [with WITHITEM {, WITHITEM}]

list [condensed] folder id [with WITHITEM {, WITHITEM}]

WITHITEM:
expand = none

| expand = < (id {, id}) | all >
| FILTERTERM {or FILTERTERM}

FILTERTERM:
FILTERITEM {and FILTERITEM}

FILTERITEM:
(FILTERTERM {or FILTERTERM})

| name like string
| not (FILTERTERM {or FILTERTERM})
| owner in (groupname {, groupname})

Description

DescriptionThe list folder statement gives you a list for the specified folder with all the direct
child folders.

expand The expand option can be used to make the hierarchy visible at chil-
dren level. This is done by specifying in the list the IDs of the nodes whose children
are to be made visible. If none is specified as an expand option, only the level below
the requested node is made visible.

233

filter The child folders can be selected by name. Refer to the official Java docu-
mentation for the exact syntax used for regular expressions. The various conditions
can be combined with one another using and and or. The usual valuation order of
the operators applies (and before or).

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
TYPE This states the type of object. The following op-

tions are available: Batch, Milestone, Job and
Folder.

RUN_PROGRAM A command line that starts the script or pro-
gram can be specified in the Run_Program field.

RERUN_PROGRAM The Rerun_Program field specifies the com-
mand that is to be executed when repeating the
job following an error (rerun).

KILL_PROGRAM The Kill_Program field determines which pro-
gram is to be run to terminate a currently run-
ning job.

WORKDIR This is the working directory of the current job.
LOGFILE The Logfile field specifies the file in which all

the normal outputs of the Run program are to
be returned. These are usually all the outputs
that use the standard output channel (STDOUT
under UNIX).

TRUNC_LOG Defines whether the log file is to be renewed or
not

ERRLOGFILE The Error Logfile field specifies the file in which
all the error outputs from the Run_program are
to be returned.

TRUNC_ERRLOG Defines whether the Error log file is to be re-
newed or not

Continued on next page

234

Continued from previous page

Field Description
EXPECTED_RUNTIME The Expected_Runtime describes the antici-

pated time that will be required to execute a job.
EXPECTED_FINALTIME The Expected_Finaltime describes the antici-

pated time that will be required to execute a job
or batch together with its children.

GET_EXPECTED_RUNTIME This is a reserved field for future extended func-
tions.

PRIORITY The Priority field indicates the urgency with
which the process, if it is to be started, is to be
considered by the Scheduling System.

MIN_PRIORITY This is the minimum effective priority that can
be achieved through natural aging.

AGING_AMOUNT The number of time units after which the effec-
tive priority is incremented by 1.

AGING_BASE The time unit that is used for the aging interval
SUBMIT_SUSPENDED Flag that indicates whether the object is to be

suspended after the submit
MASTER_SUBMITTABLE The job that is started by the trigger is submit-

ted as its own Master Job and does not have any
influence on the current Master Job run of the
triggering job.

SAME_NODE Obsolete
GANG_SCHEDULE Obsolete
DEPENDENCY_MODE The Dependency Mode states the context in

which the list of dependencies has to be viewed.
The following options are available: ALL and
ANY.

ESP_NAME This is the name of the Exit State Profile.
ESM_NAME This is the name of the Exit State Mapping.
ENV_NAME This is the name of the environment.
FP_NAME This is the name of the footprint.
SUBFOLDERS This is the number of folders below the folder.
ENTITIES This is the number of jobs and batches below the

folder.
HAS_MSE The folder contains at least one job that can be

executed as a Master Submittable job.
PRIVS String containing the users privileges on the ob-

ject
Continued on next page

235

Continued from previous page

Field Description
IDPATH Id of the path to the object
HIT Line is a search hit Y/N.

Table 14.10.: Description of the output structure of the list folder statement

236

list footprint

Purpose

PurposeThe purpose of the list footprint statement is to get a list of all defined footprints.

Syntax

SyntaxThe syntax for the list footprint statement is

list footprint

Description

DescriptionThe list footprint statement gives you a list of all the defined footprints.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
PRIVS String containing the users privileges on the ob-

ject

Table 14.11.: Description of the output structure of the list footprint statement

237

list group

Purpose

Purpose The purpose of the list group statement is to get a list of all defined groups.

Syntax

Syntax The syntax for the list group statement is

list group

Description

Description The list group statement gives you a list of all the defined groups.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
PRIVS String containing the users privileges on the ob-

ject

Table 14.12.: Description of the output structure of the list group statement

238

list interval

Purpose

PurposeThe purpose of the list interval statement is to get a list of all defined intervals.

Syntax

SyntaxThe syntax for the list interval statement is

list interval

list interval all

Description

DescriptionThe list interval statement gives you a list of all the defined intervals.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
STARTTIME The beginning of the interval. No edges are gen-

erated before this time.
ENDTIME The end of the interval. No edges are generated

after this time.
BASE The period of the interval
DURATION The duration of a block
SYNCTIME The time with which the interval is synchro-

nised. The first period of the interval starts at
this time.

INVERSE The definition whether the selection list should
be regarded as being positive or negative

EMBEDDED The interval from which a selection is subse-
quently made

Continued on next page

239

Continued from previous page

Field Description
OBJ_TYPE The object type is the type of object to which the

interval belongs.
OBJ_ID The object id is the ID of the object to which the

interval belongs.
PRIVS String containing the users privileges on the ob-

ject
SE_ID If an interval has been created as part of a sched-

ule for a Job Definition, the job ID is set in the
interval.

Table 14.13.: Description of the output structure of the list interval statement

240

list job

Purpose

PurposeThe purpose of the list job statement is to get a list of submitted entities based on
the selectioncriteria specified.

Syntax

SyntaxThe syntax for the list job statement is

list [condensed] job [jobid {, jobid}] [with WITHITEM {, WITHITEM}]

WITHITEM:
enabled only

| expand = none
| expand = < (id {, id}) | all >
| FILTERTERM {or FILTERTERM}
| mode = < list | tree >
| parameter = (parametername {, parametername})

FILTERTERM:
FILTERITEM {and FILTERITEM}

FILTERITEM:
(FILTERTERM {or FILTERTERM})

| < enable | disable >
| < final | restartable | pending >
| exit state in (statename {, statename})
| < history | future > = period
| history between period and period
| job . identifier < cmpop | like | not like > RVALUE

| job in (jobid {, jobid})
| jobserver in (serverpath {, serverpath})
| job status in (JOBSTATE {, JOBSTATE})
| master
| master_id in (jobid {, jobid})
| merged exit state in (statename {, statename})
| name in (folderpath {, folderpath})
| name like string
| node in (nodename {, nodename})
| not (FILTERTERM {or FILTERTERM})

241

| owner in (groupname {, groupname})
| submitting user in (groupname {, groupname})
| warning

RVALUE:
expr (string)

| number
| string

JOBSTATE:
broken active

| broken finished
| cancelled
| dependency wait
| error
| final
| finished
| killed
| resource wait
| runnable
| running
| started
| starting
| submitted
| SUSPENDED
| synchronize wait
| to kill
| unreachable

Description

Description The list job statement gives you a list of Submitted Entities. The selection of
the jobs can be finely specified as required that by defining a filter. Job parameter
names can also be specified that are then visible in the output.
The statement list jobwithout any further information is equivalent to the state-
ment list job with master and therefore outputs the list of all the Master
Jobs and Batches.

expand The expand option can be used to make the hierarchy visible at chil-
dren level. This is done by specifying in the list the IDs of the nodes whose children
are to be made visible. If none is specified as an expand option, only the level below
the requested node is made visible.

242

mode list mode just outputs a list of selected jobs. If the tree mode is defined,
however, all the parents for each selected job are outputted as well.

parameter Additional information about the selected jobs can be outputted by
specifying parameter names. The parameters are valuated in the context of each job
and the value of the parameter is displayed in the output. If this fails, the output
is an empty string. This means that specifying non-existent parameter names does
not have any adverse consequences.
This allows state or progress details for jobs to be easily and clearly are displayed.

filter A large number of filters are available for filtering all the jobs present in
the system. The individual filters can be combined with one another using Boolean
operators. The usual order of priority operator applies here.
The individual filter functions are briefly described here.
FINAL, RESTARTABLE, PENDING This filter selects all the jobs in the state final re-
spectively restartable or pending.
EXIT STATE All jobs that are in an Exit State defined in the specified list are selected.
This is the job’s own Exit State, and not the Merged Exit State which also takes the
Exit States of the children into consideration.
HISTORY By defining a history, only those jobs that have become final at the earliest
before the given time are selected. All non-final jobs are selected.
FUTURE Scheduled future jobs are also outputted by specifying a future. These
events are determined based on Scheduled Events and calendar entries. ”SCHED-
ULED” is outputted as the state of such jobs.
JOB.IDENTIFIER This filter is used to select all those jobs whose defined parameters
fulfil the condition. This allows all the jobs of a developer to be easily selected, for
example. (This obviously assumes that each job has a parameter with the devel-
oper’s name).
The expr Function can be used to perform calculations The expression

job.starttime < expr('job.sysdate - job.expruntime * 1.5')

determines those jobs, that exceeded their expected runtime by more than 50%.
JOB IN (ID, . . .) This filter option is equivalent to specifying Jobids after ”list job”.
Only those jobs with one of the specified IDs are selected.
JOBSERVER Only those jobs running on the specified jobserver are selected.
JOB STATE This filter selects only those jobs that have one of the specified job states.
For example, it is then easy to find all the jobs in the state broken_finished.
MASTER Only the Master Jobs and Batches are selected.
MASTER_ID Only jobs that belong to the specified Master Jobs and Batches are se-
lected.

243

MERGED EXIT STATE All jobs that are in a Merged Exit State defined in the specified
list are selected. This is the Exit State that results from a job’s own Exit State in
combination with the Exit States of the children.
NAME IN (FOLDERPATH, . . .) The jobs whose associated Scheduling Entity is in-
cluded in the specified list are selected.
NAME LIKE STRING The jobs whose associated Scheduling Entity has the matching
name are selected. Refer to the official Java documentation for more details about
the syntax used for regular expressions.
NODE Jobs running on one of the specified nodes are selected. In this context, the
node designates the entry for the node of the jobserver.
OWNER Only the jobs of the defined owners (groups) are selected.
SUBMITTING USER Only jobs that have been submitted by the specified user are
selected.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
MASTER_ID This is the ID of the Master Job.

HIERARCHY_PATH The Hierarchy Path is the full path of the current
entry. The single hierarchy levels are separated
by a period.

SE_TYPE This is the Scheduling Entity type (job, batch or
milestone).

PARENT_ID This is the Id of the parent.
OWNER The group owning the object
SCOPE The scope or jobserver to which the job is allo-

cated
HTTPHOST The host name of the scope for accessing log

files via HTTP
HTTPPORT The HTTP port number of the jobserver for ac-

cessing log files via HTTP
EXIT_CODE The Exit_Code of the executed process
Continued on next page

244

Continued from previous page

Field Description
PID The PID is the process identification number of

the monitoring jobserver process on the respec-
tive host system.

EXTPID The EXT_PID is the process identification num-
ber of the utility process.

STATE The State is the current state of the job.
IS_DISABLED Indicates whether the submitted entitity is dis-

abled
IS_CANCELLED Indicates whether a Cancel operation was per-

formed on the job
JOB_ESD The Job_Esd is the Exit State of the job.
FINAL_ESD The final_esd is the Merged Exit State of the job

or batch job with all the Child Exit States.
JOB_IS_FINAL This field defines whether the job itself is final.
CNT_RESTARTABLE The number of children in a Restartable state
CNT_SUBMITTED The number of children in a Submitted state
CNT_DEPENDENCY_WAIT The number of children in a Dependcy_Wait

state
CNT_SYNCHRONIZE_WAIT The number of children in a Synchronize_Wait

state
CNT_RESOURCE_WAIT The number of children in a Resource_Wait state
CNT_RUNNABLE The number of children in a Runnable state
CNT_STARTING The number of children in a Starting state
CNT_STARTED The number of children in a Started state
CNT_RUNNING The number of children in a Running state
CNT_TO_KILL The number of children in a To_Kill state
CNT_KILLED The number of children in a Killed state
CNT_CANCELLED The number of children in a Cancelled state
CNT_FINISHED The number of children in a Finished state
CNT_FINAL The number of children in a Final state
CNT_BROKEN_ACTIVE The number of children in a Broken_Active state
CNT_BROKEN_FINISHED The number of children in a Broken_Finished

state
CNT_ERROR The number of children in an Error state
CNT_UNREACHABLE The number of children in a Unreachable state
CNT_WARN The number of children with a warning
SUBMIT_TS The time when the job was submitted
Continued on next page

245

Continued from previous page

Field Description
RESUME_TS The time when the job is automatically resumed
SYNC_TS The time when the job switched to the state syn-

chronize_wait
RESOURCE_TS The time when the job switched to the state Re-

source_wait
RUNNABLE_TS The time when the job reached the state

Runnable
START_TS The time when the job was reported by the job-

server as having been started
FINISH_TS This is the time when the job is finished.
FINAL_TS The time when the job reached the state Final
PRIORITY The static priority of a job. This is derived from

the defined priority and the nice values of the
parent(s).

DYNAMIC_PRIORITY The Dynamic_Priority of the job. This is the
static priority that was corrected dependent on
the delay time.

NICEVALUE The nice value is the correction of the children’s
priority.

MIN_PRIORITY This is the minimum value for the dynamic pri-
ority.

AGING_AMOUNT The Aging_Amount defines after how many
time units the dynamic priority of a job is in-
cremented by one point.

AGING_BASE The Aging_Base defines the time unit for the
Aging Amount.

ERROR_MSG The error message describing why the job
switched to the error state.

CHILDREN The number of children of the job or batch
HIT This field indicates whether the job was selected

based on filter criteria or not.
HITPATH This field indicates that the job is a direct or in-

direct parent of a selected job.
SUBMITPATH This is the list of submitting parents. In contrast

to the general parent-child hierarchy, this is al-
ways unequivocal.

IS_SUSPENDED This field defines whether the job or batch itself
is suspended.

Continued on next page

246

Continued from previous page

Field Description
IS_RESTARTABLE This field defines whether the job is restartable.
PARENT_SUSPENDED This field defines whether the job is suspended

(True) or not (False) through one of its parents.
CHILDTAG The tag that enables a differentiation to be made

between multiple children
IS_REPLACED This field defines whether the job or batch has

been replaced by another one.
WARN_COUNT This is the number of unattended warnings.
CHILD_SUSPENDED The number of children that have been sus-

pended
CNT_PENDING The number of children in a Pending state
PRIVS String containing the users privileges on the ob-

ject
WORKDIR Name of the working directory of the utility

process
LOGFILE Name of the utility process log file. The output

to stdout is written in this log.
ERRLOGFILE Name of the utility process error log file. The

output to stderr is written in this log.
APPROVAL_PENDING This field indicates whether an Approval or Re-

view Request exists for the relevant Submitted
Entity

Table 14.14.: Description of the output structure of the list job statement

247

list job definition hierarchy

Purpose

Purpose The purpose of the list job definition hierarchy statement is to get the complete
jobtree of the specified job.

Syntax

Syntax The syntax for the list job definition hierarchy statement is

list [condensed] job definition hierarchy folderpath [with EXPAND]

list [condensed] job definition hierarchy id [with EXPAND]

EXPAND:
expand = none

| expand = < (id {, id}) | all >

Description

Description The list job definition statement hierarchy gives you the complete tree structure
of the specified job.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
TYPE This states the type of object. The following op-

tions are available: Batch, Milestone, Job and
Folder.

RUN_PROGRAM A command line that starts the script or pro-
gram can be specified in the Run_Program field.

Continued on next page

248

Continued from previous page

Field Description
RERUN_PROGRAM The Rerun_Program field specifies the com-

mand that is to be executed when repeating the
job following an error (rerun).

KILL_PROGRAM The Kill_Program field determines which pro-
gram is to be run to terminate a currently run-
ning job.

WORKDIR This is the working directory of the current job.
LOGFILE The Logfile field specifies the file in which all

the normal outputs of the Run program are to
be returned. These are usually all the outputs
that use the standard output channel (STDOUT
under UNIX).

TRUNC_LOG Defines whether the log file is to be renewed or
not

ERRLOGFILE The Error Logfile field specifies the file in which
all the error outputs from the Run_program are
to be returned.

TRUNC_ERRLOG Defines whether the Error log file is to be re-
newed or not

EXPECTED_RUNTIME The Expected_Runtime describes the antici-
pated time that will be required to execute a job.

GET_EXPECTED_RUNTIME This is a reserved field for future extended func-
tions.

PRIORITY The Priority field indicates the urgency with
which the process, if it is to be started, is to be
considered by the Scheduling System.

SUBMIT_SUSPENDED The Submit_Suspended parameter specifies the
form in which the Child Object is delayed when
being started or if it can be started immediately.
The following options are available: Yes, No
and Childsuspend.

MASTER_SUBMITTABLE The job that is started by the trigger is submit-
ted as its own Master Job and does not have any
influence on the current Master Job run of the
triggering job.

SAME_NODE Obsolete
GANG_SCHEDULE Obsolete
Continued on next page

249

Continued from previous page

Field Description
DEPENDENCY_MODE The Dependency Mode states the context in

which the list of dependencies has to be viewed.
The following options are available: ALL and
ANY.

ESP_NAME This is the name of the Exit State Profile.
ESM_NAME This is the name of the Exit State Mapping.
ENV_NAME This is the name of the environment.
FP_NAME This is the name of the footprint.
CHILDREN This is the number of direct children.
SH_ID The Id of the Hierarchy Definition
IS_STATIC Flag indicating the static or dynamic submits of

this job
IS_DISABLED Flag indicating the the child should be executed

or skipped
INT_NAME The interval id is the ID of the interval used to

check whether the child is enabled.
ENABLE_CONDITION The interval id is the ID of the interval used to

check whether the child is enabled.
ENABLE_MODE The interval id is the ID of the interval used to

check whether the child is enabled.
SH_PRIORITY The Priority field indicates the urgency with

which the process, if it is to be started, is to be
considered by the Scheduling System.

SH_SUSPEND The Submit Suspended switch can be used to
delay the actual start of a job run.

SH_ALIAS_NAME A child can be assigned a new logical name by
entering it in the Alias field.

MERGE_MODE The Merge_Mode indicates whether a Child Ob-
ject is started multiple times within a Master Job
run or not. The following options are available:
No Merge, Failure, Merge Local and Merge
Global.

EST_NAME This is the Exit State Translation.
IGNORED_DEPENDENCIES Here you can add a list of dependencies which

are to be ignored by the child in this parent-child
relationship.

Continued on next page

250

Continued from previous page

Field Description
HIERARCHY_PATH The Path describes the parent folder hierarchy

of an object. All the parent folders are displayed
separated by periods.

STATES The State is the current state of the job.
PRIVS String containing the users privileges on the ob-

ject

Table 14.15.: Description of the output structure of the list job definition hierarchy
statement

251

list named resource

Purpose

Purpose The purpose of the list named resource statement is to get a (partial) list of all
defined named resources.

Syntax

Syntax The syntax for the list named resource statement is

list named resource [identifier {. identifier}] [with WITHITEM {,
WITHITEM}]

list named resource id [with WITHITEM {, WITHITEM}]

WITHITEM:
expand = none

| expand = < (id {, id}) | all >
| FILTERTERM {or FILTERTERM}

FILTERTERM:
FILTERITEM {and FILTERITEM}

FILTERITEM:
(FILTERTERM {or FILTERTERM})

| name like string
| not (FILTERTERM {or FILTERTERM})
| usage in (RESOURCE_USAGE {, RESOURCE_USAGE})

RESOURCE_USAGE:
category

| static
| synchronizing
| system

Description

Description The list named resource statement gives you a list of all the defined Named Re-
sources. If a resource is specified, this Named Resource and, if the Named Re-
source is a category, all the children are listed. The list of Named Resources can be
shortened accordingly by specifying a filter.

252

expand The expand option can be used to make the hierarchy visible at chil-
dren level. This is done by specifying in the list the IDs of the nodes whose children
are to be made visible. If none is specified as an expand option, only the level below
the requested node is made visible.

filter Named Resources can be filtered by name and/or usage by specifying
filters. Refer to the official Java documentation for the syntax used for regular ex-
pressions.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
USAGE The Usage field specifies the Resource type.
RESOURCE_STATE_PROFILE This is the Resource State Profile assigned to the

resource.
FACTOR This is the default factor by which Resource Re-

quirement Amounts are multiplied if nothing
else has been specified for the resource.

SUBCATEGORIES This is the number of categories that are present
as children below the displayed Named Re-
sources.

RESOURCES These are the instances of the Named Resource.
PRIVS String containing the users privileges on the ob-

ject
IDPATH The idpath is a list of parent IDs separated by

periods. This value is mainly used for frontend
programs.

Table 14.16.: Description of the output structure of the list named resource
statement

253

list resource state definition

Purpose

Purpose The purpose of the list resource state definition is to get a list of all defined resource
states.

Syntax

Syntax The syntax for the list resource state definition statement is

list resource state definition

Description

Description The list resource state definition statement gives you a list of all the defined Re-
source States.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
PRIVS String containing the users privileges on the ob-

ject

Table 14.17.: Description of the output structure of the list resource state definition
statement

254

list resource state mapping

Purpose

PurposeThe purpose of the list resource state mapping statement is to get a list of all defined
resource state mappings.

Syntax

SyntaxThe syntax for the list resource state mapping statement is

list resource state mapping

list resource state mapping for profilename

Description

DescriptionThe list resource state mapping gives you a list of all the defined Resource States
Mappings.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
PRIVS String containing the users privileges on the ob-

ject

Table 14.18.: Description of the output structure of the list resource state mapping
statement

255

list resource state profile

Purpose

Purpose The purpose of the list resource state profile statement is to get a list of all currently
defined resource state profiles.

Syntax

Syntax The syntax for the list resource state profile statement is

list resource state profile

Description

Description The list resource state profile statement gives you a list of all the defined Resource
State Profiles.

Output

Output This statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
INITIAL_STATE This field defines the initial state of the resource.

This Resource State does not have to be present
in the list of valid Resource States.

PRIVS String containing the users privileges on the ob-
ject

Table 14.19.: Description of the output structure of the list resource state profile
statement

256

list schedule

Purpose

PurposeThe purpose of the list schedule statement is to get a (partial) list of all defined
schedules.

Syntax

SyntaxThe syntax for the list schedule statement is

list schedule schedulepath [with EXPAND]

EXPAND:
expand = none

| expand = < (id {, id}) | all >

Description

DescriptionThe list schedule statement delivers a list with the specified schedule and all its
children.

expand The expand option can be used to make the hierarchy visible at chil-
dren level. This is done by specifying in the list the IDs of the nodes whose children
are to be made visible. If none is specified as an expand option, only the level below
the requested node is made visible.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
INTERVAL The name of the interval belonging to the sched-

ule
Continued on next page

257

Continued from previous page

Field Description
TIME_ZONE The time zone in which the schedule is to be cal-

culated
ACTIVE This field defines whether the schedule is

marked as being active.
EFF_ACTIVE This field defines whether the schedule is actu-

ally active. This can deviate from ”active” due
to the hierarchical organisation.

PRIVS String containing the users privileges on the ob-
ject

Table 14.20.: Description of the output structure of the list schedule statement

258

list scheduled

Purpose

PurposeThe list scheduled command shows a list of the batches and jobs that will be started
in the specified period.

Syntax

SyntaxThe syntax for the list scheduled statement is

list scheduled with LC_WITHITEM {, LC_WITHITEM}

LC_WITHITEM:
endtime = datetime

| filter = LC_FILTERTERM {or LC_FILTERTERM}
| starttime = datetime
| time zone = string

LC_FILTERTERM:
LC_FILTERITEM {and LC_FILTERITEM}

LC_FILTERITEM:
(LC_FILTERTERM {or LC_FILTERTERM})

| job . identifier < cmpop | like | not like > RVALUE

| name like string
| not (LC_FILTERTERM {or LC_FILTERTERM})
| owner in (groupname {, groupname})

RVALUE:
expr (string)

| number
| string

Description

DescriptionThe list scheduled statement provides a list of all the scheduled start times for
batches and jobs.

Output

OutputThis statement returns an output structure of type table.

259

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
SE_NAME Name of the Scheduling Entity
SE_TYPE Type of the Scheduling Entity (job or batch)
SE_ID Id of the Scheduling Entity
SE_OWNER Owner of the Scheduling Entity
SE_PRIVS Privileges for the Scheduling Entity
SCE_NAME Name of the schedule
SCE_ACTIVE Flag that indicates if the schedule is active
EVT_NAME Name of the event
STARTTIME Start time
EXPECTED_FINAL_TIME Expected date and time the job or batch will

reach a final state
TIME_ZONE The used time zone for date and time display

Table 14.21.: Description of the output structure of the list scheduled statement

260

list scheduled event

Purpose

PurposeThe purpose of the list scheduled event is to get a list of all defined scheduled
events.

Syntax

SyntaxThe syntax for the list scheduled event statement is

list scheduled event

Description

DescriptionThe list scheduled event statement gives you a list of all the defined Scheduled
Events.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
OWNER The group owning the object
SCHEDULE The Schedule that determines when the Sched-

uled Event is to take place
EVENT The event that is triggered
ACTIVE This flag indicates whether the Scheduled Event

is labelled as being active.
EFF_ACTIVE This flag indicates whether the Scheduled Event

is actually active.
BROKEN The Broken field can be used to check whether

an error occurred when the job was submitted.
ERROR_CODE If an error occurred while the job was being exe-

cuted in the Time Scheduling, the returned error
code is displayed in the Error_Code field. If no
error occurred, this field remains empty.

Continued on next page

261

Continued from previous page

Field Description
ERROR_MSG If an error occurred while the job was being exe-

cuted in the Time Scheduling, the returned error
message is displayed in the Error Message field.
If no error occurred, this field remains empty.

LAST_START The last time the job is to be executed by the
Scheduling System is shown here

NEXT_START The next scheduled time when the task is to be
executed by the Scheduling System is shown
here.

NEXT_CALC The next time when a recalculation is to take
place

PRIVS String containing the users privileges on the ob-
ject

BACKLOG_HANDLING The Backlog_Handling describes how events
that should have been triggered following a
downtime are to be handled.

SUSPEND_LIMIT The Suspend_Limit defines the delay after
which a job is submitted in a suspended state.

EFFECTIVE_SUSPEND_LIMIT The Suspend Limit defines the delay after which
a job is submitted in a suspended state.

CALENDAR This flag indicates whether calendar entries are
created.

CALENDAR_HORIZON The defined length of the period in days for
which a calendar is created

EFFECTIVE_CALENDAR_
HORIZON

The effective length of the period in days for
which a calendar is created

Table 14.22.: Description of the output structure of the list scheduled event
statement

262

list scope

Purpose

PurposeThe purpose of the list scope statement is to get a (partial) list of all defined scopes.

Syntax

SyntaxThe syntax for the list scope statement is

list < scope serverpath | jobserver serverpath > [with EXPAND]

EXPAND:
expand = none

| expand = < (id {, id}) | all >

Description

DescriptionThe list scope statement displays a list with the requested scope together with its
children.

expand The expand option can be used to make the hierarchy visible at chil-
dren level. This is done by specifying in the list the IDs of the nodes whose children
are to be made visible. If none is specified as an expand option, only the level below
the requested node is made visible.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
TYPE The type of scope
IS_TERMINATE This flag indicates whether a termination order

exists.
Continued on next page

263

Continued from previous page

Field Description
HAS_ALTERED_CONFIG The configuration on the server does not match

the current configuration on the server.
IS_SUSPENDED Indicates whether the scope is suspended
IS_ENABLED The jobserver can only log on to the server if the

Enable flag is set to YES.
IS_REGISTERED Defines whether the jobserver has sent a register

command
IS_CONNECTED Indicates whether the jobserver is connected
STATE This is the current state of the resource in this

scope.
PID The PID is the process identification number of

the jobserver process on the respective host sys-
tem.

NODE The Node specifies the computer on which the
jobserver is running. This field has a purely doc-
umentary character.

IDLE The time that has elapsed since the last com-
mand. This only applies for jobservers.

NOPDELAY The time that a jobserver waits for NOP
ONLINE_SERVER The online_server column indicates whether the

job server is configured as such. The value is
always set to True for scopes.

ERRMSG This is the most recently outputted error mes-
sage.

SUBSCOPES The number of scopes and jobservers that are
present under this scope

RESOURCES The resources present in this scope are dis-
played here.

PRIVS String containing the users privileges on the ob-
ject

IDPATH The idpath is a list of parent IDs separated by
periods. This value is mainly used for frontend
programs.

Table 14.23.: Description of the output structure of the list scope statement

264

list session

Purpose

PurposeThe purpose of the list session statement is to get a list of connected sessions.

Syntax

SyntaxThe syntax for the list session statement is

list session

Description

DescriptionThe list session statement gives you a list of the connected sessions.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
THIS The current session is indicated in this field by

an asterisk (*).
SESSIONID The internal server Id for the session
PORT The TCP/IP port number at which the session is

connected
START Time when the connection was set up
TYPE Type of connection: user, jobserver or job
USER Name of the connecting user, jobserver or job

(Job Id)
UID Id of the user, jobserver or job
IP IP address of the connecting sessions
TXID Number of the last transaction that was exe-

cuted by the session
IDLE The number of seconds since the last statement

from a session
Continued on next page

265

Continued from previous page

Field Description
STATE The state of the session. This is one of

the following: IDLE (no activity), QUEUED
(statement is waiting to be executed), ACTIVE
(statement is being executed), COMMITTING
(changes to a write transaction are being writ-
ten), CONNECTED (not yet authenticated).

TIMEOUT The idle time after which the session is automat-
ically disconnected

INFORMATION Additional information about the session (op-
tional)

STATEMENT The statement that is currently being executed
WAIT The wait flag shows if the session is waiting (for

a lock).

Table 14.24.: Description of the output structure of the list session statement

266

list trigger

Purpose

PurposeThe purpose of the list trigger statement is to get a list of defined trigger.

Syntax

SyntaxThe syntax for the list trigger statement is

list trigger [< all | limit integer >]

list trigger for folderpath [< all | limit integer >]

list trigger of folderpath [< all | limit integer >]

list trigger for CT_OBJECT [< all | limit integer >]

CT_OBJECT:
job definition folderpath

| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in < folderpath | serverpath >

Description

DescriptionThe list trigger statement gives you a list of all the defined triggers.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OBJECT_TYPE The type of object in which the trigger is defined
Continued on next page

267

Continued from previous page

Field Description
OBJECT_SUBTYPE The subtype of the object in which the trigger is

defined
OBJECT_NAME Full path name of the object in which the trigger

is defined
ACTIVE The flag indicates whether the trigger is cur-

rently active.
ACTION Type of triggered action: SUBMIT or RERUN
STATES A list of states that cause the trigger to be acti-

vated
SUBMIT_TYPE The object type that is submitted when the trig-

ger is activated
SUBMIT_NAME Name of the job definition that is submitted
SUBMIT_SE_OWNER The owner of the object that is submitted
SUBMIT_PRIVS The privileges for the object that is to be submit-

ted
MAIN_TYPE Type of main job (job/batch)
MAIN_NAME Name of the main job
MAIN_SE_OWNER Owner of the main job
MAIN_PRIVS Privileges for the main job
PARENT_TYPE Type of parent job (job/batch)
PARENT_NAME Name of the parent job
PARENT_SE_OWNER Owner of the parent job
PARENT_PRIVS Privileges for the parent job
TRIGGER_TYPE The trigger type that describes when it is acti-

vated
MASTER Indicates whether the trigger submitted a mas-

ter or a child
IS_INVERSE In case of an inverse trigger, the trigger is re-

garded to belong to the triggered job. The trig-
ger can be regarded as some kind of callback
function. This flag has no effects on the trigger’s
behaviour.

SUBMIT_OWNER The owner group that is used with the Submit-
ted Entity

IS_CREATE Indicates whether the trigger reacts to create
events

Continued on next page

268

Continued from previous page

Field Description
IS_CHANGE Indicates whether the trigger reacts to change

events
IS_DELETE Indicates whether the trigger reacts to delete

events
IS_GROUP Indicates whether the trigger handles the events

as a group
MAX_RETRY The maximum number of trigger activations in

a single Submitted Entity
SUSPEND Specifies whether the submitted object is sus-

pended
RESUME_AT Time of the automatic resume
RESUME_IN Number of time units until the automatic re-

sume
RESUME_BASE Specified time unit for RESUME_IN
WARN Specifies whether a warning has to be given

when the activation limit is reached
LIMIT_STATE This field specifies which state the triggering job

aqcuires if the fire limit is reached. If the trig-
gering job has a final state already, this specifi-
cation is ignored. If the value is NONE, no state
change takes place.

CONDITION Conditional expression to define the trigger
condition

CHECK_AMOUNT The amount of CHECK_BASE units for
checking the condition in the case of non-
synchronised triggers

CHECK_BASE Units for the CHECK_AMOUNT
PARAMETERS The parameter clause can be used to define pa-

rameters for the job or batch that is to be sub-
mitted. The names of the parameters are taken
over as such. The expressions are valuated in
the context of the triggering job or batch.

PRIVS String containing the users privileges on the ob-
ject

TAG Units for the CHECK_AMOUNT
Continued on next page

269

Continued from previous page

Field Description
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined

Table 14.25.: Description of the output structure of the list trigger statement

270

list user

Purpose

PurposeThe purpose of the list user statement is to get a list of all defined users.

Syntax

SyntaxThe syntax for the list user statement is

list user

Description

DescriptionThe list user statement gives you a list of all the defined users.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
IS_ENABLED Flag that shows whether the user is allowed to

log on
DEFAULT_GROUP The default group of the users who are being

used by the owners of the object
Continued on next page

271

Continued from previous page

Field Description
CONNECTION_TYPE Indicates which security level of a connection is

required.

1. plain – Every kind of connection is per-
mitted

2. ssl – Only SSL-connections are permitted

3. ssl_auth – Only SSL-connections with
client authentication are permitted

PRIVS String containing the users privileges on the ob-
ject

Table 14.26.: Description of the output structure of the list user statement

272

15. move commands

273

move folder

Purpose

Purpose The purpose of the move folder statement is to rename the folder and/or to move
it to some other place in the folder hierarchy.

Syntax

Syntax The syntax for the move folder statement is

move folder folderpath to folderpath

Description

Description The move folder command either moves the specified folder to somewhere else or
renames it.

Output

Output This statement returns a confirmation of a successful operation.

274

move job definition

Purpose

PurposeThe purpose of the move job definition statement is to rename a scheduling entity
object, and/or move it into some other folder.

Syntax

SyntaxThe syntax for the move job definition statement is

move job definition folderpath to folderpath

Description

DescriptionThe move job definition command moves the specified job definition to the speci-
fied folder. If the destination folder does not exist, the last part of the fully qualified
name is interpreted as being the new name for the job definition. The relationships
to other objects are not changed.

Output

OutputThis statement returns a confirmation of a successful operation.

275

move named resource

Purpose

Purpose The purpose of the move named resource statement is to rename the named re-
source and/or to move the resource into another category.

Syntax

Syntax The syntax for the move named resource statement is

move named resource identifier {. identifier} to identifier {. identifier}

Description

Description The move named resource statement is used to rename a Named Resource or to
reorganise categories.
If a Named Resource is moved, the specified destination has to be a category or it
must not exist and its parent must be a category.

Output

Output This statement returns a confirmation of a successful operation.

276

move schedule

Purpose

PurposeThe purpose of the move schedule statement is to rename and/or to move the
schedule to some other place in the hierarchy.

Syntax

SyntaxThe syntax for the move schedule statement is

move schedule schedulepath . schedulename to schedulepath

Description

DescriptionThe move schedule command either moves the specified schedule to somewhere
else and/or renames it.

Output

OutputThis statement returns a confirmation of a successful operation.

277

move scope

Purpose

Purpose The purpose of the move scope statement is to rename a scope and/or to move it
to some other place within the scope hierarchy.

Syntax

Syntax The syntax for the move scope statement is

move < scope serverpath | jobserver serverpath > to serverpath

Description

Description The move scope command either moves the specified scope to somewhere else
and/or renames it.

Output

Output This statement returns a confirmation of a successful operation.

278

16. multicommand commands

279

multicommand

Purpose

Purpose This statement is used to control the behaviour of the SDMS Server.

Syntax

Syntax The syntax for the multicommand statement is

begin multicommand commandlist end multicommand

begin multicommand commandlist end multicommand rollback

Description

Description The multicommands allow multiple SDMS commands to be executed together,
i.e. in one transaction. This ensures that either all the statements are executed
without any errors or nothing happens at all. Not only that, but the transaction is
not interrupted by other write transactions.
If the rollback keyword is specified, the transaction is undone at the end of the
processing. This means that you can test whether the statements can be correctly
processed (technically speaking).

Output

Output This statement returns a confirmation of a successful operation.

280

17. register commands

281

register

Purpose

Purpose The purpose of the register statement is to notify the server that the jobserver is
ready to process jobs.

Syntax

Syntax The syntax for the register statement is

register serverpath . servername
with pid = pid [suspend]

register with pid = pid

Description

Description The first form is used by the operator to enable jobs to be executed by the speci-
fied jobserver.
The second form is used by the jobserver itself to notify the server that it is ready
to execute jobs.
Jobs are scheduled for this jobserver (unless it is suspended) regardless of whether
the server is connected or not.
Refer to the ’deregister’ statement on page 180.

pid The pid option provides the server with information about the jobserver’s
process Id at operating level.

suspend The suspend option causes the jobserver to be transferred to a sus-
pended state.

Output

Output This statement returns a confirmation of a successful operation.

282

18. rename commands

283

rename environment

Purpose

Purpose The purpose of the rename environment statement is to give the specified environ-
ment another name.

Syntax

Syntax The syntax for the rename environment statement is

rename environment environmentname to environmentname

Description

Description The rename environment statement is used to rename environments. Renaming an
environment does not have any effect on the functionality and is only for purposes
of clarity.

Output

Output This statement returns a confirmation of a successful operation.

284

rename event

Purpose

PurposeThe purpose of the rename event is to give the specified event another name.

Syntax

SyntaxThe syntax for the rename event statement is

rename event eventname to eventname

Description

DescriptionThe rename event statement is used to give a specified event a different name.

Output

OutputThis statement returns a confirmation of a successful operation.

285

rename exit state definition

Purpose

Purpose The purpose of the rename exist state definition statement is to give the specified
exit state definition another name.

Syntax

Syntax The syntax for the rename exit state definition statement is

rename exit state definition statename to statename

Description

Description The rename exit state definition statement is used to rename Exit State Definitions.
Renaming an Exit State Definition does not have any effect on the functionality and
is only for purposes of clarity.

Output

Output This statement returns a confirmation of a successful operation.

286

rename exit state mapping

Purpose

PurposeThe purpose of the rename exit state mapping statement is to give the specified
mapping another name.

Syntax

SyntaxThe syntax for the rename exit state mapping statement is

rename exit state mapping mappingname to profilename

Description

DescriptionThe rename exit state mapping statement is used to rename Exit State Mappings.
Renaming an Exit State Mapping does not have any effect on the functionality and
is only for purposes of clarity.

Output

OutputThis statement returns a confirmation of a successful operation.

287

rename exit state profile

Purpose

Purpose The purpose of the rename exit state profile statement is to give the specified profile
another name.

Syntax

Syntax The syntax for the rename exit state profile statement is

rename exit state profile profilename to profilename

Description

Description The rename exit state profile statement is used to rename Exit State Profiles. Re-
naming the Exit State Profiles does not have any effect on the functionality and is
only for purposes of clarity.

Output

Output This statement returns a confirmation of a successful operation.

288

rename exit state translation

Purpose

PurposeThe purpose of the rename exit state translation statement is to give the specified
exit state translation another name.

Syntax

SyntaxThe syntax for the rename exit state translation statement is

rename exit state translation transname to transname

Description

DescriptionThe rename exit state translation statement is used to rename Exit State Transla-
tions. Renaming an Exit State Translation does not have any effect on the function-
ality and is only for purposes of clarity.

Output

OutputThis statement returns a confirmation of a successful operation.

289

rename folder

Purpose

Purpose The purpose of the rename folder statement is to give a folder another name.

Syntax

Syntax The syntax for the rename folder statement is

rename folder folderpath to foldername

Description

Description The rename folder command renames the specified folder. This is done within the
same parent folder. If an object with the new name already exists, this triggers an
error message.

Output

Output This statement returns a confirmation of a successful operation.

290

rename footprint

Purpose

PurposeThe purpose of the rename footprint statement is to give the specified footprint
another name.

Syntax

SyntaxThe syntax for the rename footprint statement is

rename footprint footprintname to footprintname

Description

DescriptionThe rename footprint statement is used to give a specified footprint a different
name.

Output

OutputThis statement returns a confirmation of a successful operation.

291

rename group

Purpose

Purpose The purpose of the rename group statement is to change the name of a group
without affecting any other properties.

Syntax

Syntax The syntax for the rename group statement is

rename group groupname to groupname

Description

Description The rename group statement is used to rename groups. Renaming a group does
not have any effect on the functionality and is only for purposes of clarity.

Output

Output This statement returns a confirmation of a successful operation.

292

rename interval

Purpose

PurposeThe purpose of the rename interval statement is to give the specified interval an-
other name.

Syntax

SyntaxThe syntax for the rename interval statement is

rename interval intervalname to intervalname

Description

DescriptionThe rename interval statement is used to give a specified interval a different name.

Output

OutputThis statement returns a confirmation of a successful operation.

293

rename job definition

Purpose

Purpose The purpose of the rename job definition statement is to give the job definition
another name.

Syntax

Syntax The syntax for the rename job definition statement is

rename job definition folderpath to jobname

Description

Description The rename job definition command renames the specified job definition.

Output

Output This statement returns a confirmation of a successful operation.

294

rename named resource

Purpose

PurposeThe purpose of the rename named resource statement is to give a named resource
another name.

Syntax

SyntaxThe syntax for the rename named resource statement is

rename named resource identifier {. identifier} to resourcename

Description

DescriptionThe rename named resource statement is used to rename a Named Resource.

Output

OutputThis statement returns a confirmation of a successful operation.

295

rename resource state definition

Purpose

Purpose The purpose of the rename resource state definition statement is to rename the re-
source state.

Syntax

Syntax The syntax for the rename resource state definition statement is

rename resource state definition statename to statename

Description

Description The rename resource state definition statement is used to rename Resource State
Definitions. Renaming a Resource State Definition does not have any effect on the
functionality and is only for purposes of clarity.

Output

Output This statement returns a confirmation of a successful operation.

296

rename resource state mapping

Purpose

PurposeThe purpose of the rename resource state mapping statement is to give the specified
mapping a new name.

Syntax

SyntaxThe syntax for the rename resource state mapping statement is

rename resource state mapping mappingname to profilename

Description

DescriptionThe rename resource state mapping statement is used to rename Resource State
Mappings. Renaming a Resource State Mapping does not have any effect on the
functionality and is only for purposes of clarity.

Output

OutputThis statement returns a confirmation of a successful operation.

297

rename resource state profile

Purpose

Purpose The purpose of the rename resource state profile is to give the specified resource
state profile a new name.

Syntax

Syntax The syntax for the rename resource state profile statement is

rename resource state profile profilename to profilename

Description

Description The rename resource state profile statement is used to rename Resource State Pro-
files. Renaming a Resource State Profile does not have any effect on the functional-
ity and is only for purposes of clarity.

Output

Output This statement returns a confirmation of a successful operation.

298

rename schedule

Purpose

PurposeThe purpose of the rename schedule statement is to give a schedule another name.

Syntax

SyntaxThe syntax for the rename schedule statement is

rename schedule schedulepath . schedulename to schedulename

Description

DescriptionThe rename schedule command renames the specified schedule.

Output

OutputThis statement returns a confirmation of a successful operation.

299

rename scope

Purpose

Purpose The purpose of the rename scope statement is to give a scope another name.

Syntax

Syntax The syntax for the rename scope statement is

rename < scope serverpath | jobserver serverpath > to scopename

Description

Description The rename scope command renames the specified scope.

Output

Output This statement returns a confirmation of a successful operation.

300

rename trigger

Purpose

PurposeThe purpose of the rename trigger statement is to give the specified trigger another
name.

Syntax

SyntaxThe syntax for the rename trigger statement is

rename trigger triggername on TRIGGEROBJECT [< noinverse | inverse
>] to triggername

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath

Description

DescriptionThe rename trigger statement is used to rename the trigger. Renaming a trigger
does not have any effect on the functionality and is only for purposes of clarity.

Output

OutputThis statement returns a confirmation of a successful operation.

301

rename user

Purpose

Purpose The purpose of the rename user statement is to change the name of a user without
altering any other of its properties.

Syntax

Syntax The syntax for the rename user statement is

rename user username to username

Description

Description The rename user statement is used to rename users. Renaming a user does not
have any effect on the functionality and is only for purposes of clarity.

Output

Output This statement returns a confirmation of a successful operation.

302

19. resume commands

303

resume

Purpose

Purpose The purpose of the resume statement is to reactivate the jobserver. See also the
suspend statement on page 418.

Syntax

Syntax The syntax for the resume statement is

resume serverpath

Description

Description The resume statement is used to reactivate a jobserver.

Output

Output This statement returns a confirmation of a successful operation.

304

20. select commands

305

select

Purpose

Purpose The purpose of the select statement is to enable the user to issue (almost) arbitrary
queries to the underlying RDBMS.

Syntax

Syntax The syntax for the select statement is

select-statement [with WITHITEM {, WITHITEM}]

WITHITEM:
identifier category [quoted]

| identifier folder [quoted]
| identifier job [quoted]
| identifier resource [quoted]
| identifier schedule [quoted]
| identifier scope [quoted]
| sort (signed_integer {, signed_integer})

Description

Description The select statement allows practically any number of database select statements
to be executed by the Scheduling Server. Refer to the documentation of the database
system you are using for information about the syntax that is used for the select
statement.
Since executing arbitrary select statements generally represents a vulnerability, ad-
ministrator privileges are required for this statement. This means that only users
belonging to the ADMIN group are allowed to use this statement.
Using the withitems causes IDs to be translated into names. This function is avail-
able for all hierarchically structured object types since this operation is not always
easy to perform using SQL means.
If the optional keyword quoted is specified, all elements will be quoted. This is
especially useful when generating statements from the repository.
It is also possible to sort the set of results after replacing the IDs. The columns that
are to be used for sorting are addressed according to their position in the set of
results (zero-based, i.e. the first column has the number 0).

Output

Output This statement returns a confirmation of a successful operation.

306

21. set commands

307

set parameter

Purpose

Purpose The purpose of the set parameter statement is to set the value of the specified
parameters within the context of the requesting job, respectively the specified job.

Syntax

Syntax The syntax for the set parameter statement is

set parameter parametername = string {, parametername = string}

set parameter < on | of > jobid parametername = string {,
parametername = string} [with comment = string]

set parameter < on | of > jobid parametername = string {,
parametername = string} identified by string [with comment = string]

Description

Description The set parameter statements can be used to set jobs or user parameter values in
the context of the job.
If the identified by option is specified, the parameter is only set if the pair jobid
and string would allow a logon.

Output

Output This statement returns a confirmation of a successful operation.

308

22. show commands

309

show comment

Purpose

Purpose The purpose of the show comment statement is to show the comment for the spe-
cified object.

Syntax

Syntax The syntax for the show comment statement is

show comment on OBJECTURL

OBJECTURL:
distribution distributionname for pool identifier {. identifier} in serverpath

| environment environmentname
| exit state definition statename
| exit state mapping mappingname
| exit state profile profilename
| exit state translation transname
| event eventname
| resource identifier {. identifier} in folderpath
| folder folderpath
| footprint footprintname
| group groupname
| interval intervalname
| job definition folderpath
| job jobid
| named resource identifier {. identifier}
| parameter parametername of PARAM_LOC

| resource state definition statename
| resource state mapping mappingname
| resource state profile profilename
| scheduled event schedulepath . eventname
| schedule schedulepath
| resource identifier {. identifier} in serverpath
| < scope serverpath | jobserver serverpath >
| trigger triggername on TRIGGEROBJECT [< noinverse | inverse >]
| user username

310

PARAM_LOC:
folder folderpath

| job definition folderpath
| named resource identifier {. identifier}
| < scope serverpath | jobserver serverpath >

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath

Description

DescriptionThe show comment statement is used to display the saved comment for the speci-
fied object. If no comment on the object exists, this is not regarded as being an error;
instead, an empty output structure is created and returned. This empty output
structure naturally corresponds to the output structure described below, so that it
can be easily evaluated by programs without any exception handling.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
ID System-wide unique object number
TAG The comment tag is a headline of the comment

block. It is an optional field.
COMMENT The comment on the specified object
COMMENTTYPE Type of comment, text or URL
CREATOR Name of the user who created this pool
CREATE_TIME The creation time
CHANGER Name of the last user who modified this pool
Continued on next page

311

Continued from previous page

Field Description
CHANGE_TIME Time of the last modification
PRIVS Abbreviation for the privileges for this object

held by the requesting user

Table 22.1.: Description of the output structure of the show comment statement

312

show environment

Purpose

PurposeThe purpose of the show environment statement is to get detailed informatoion
about the specified environment.

Syntax

SyntaxThe syntax for the show environment statement is

show environment environmentname [with EXPAND]

EXPAND:
expand = none

| expand = < (id {, id}) | all >

Description

DescriptionThe show environment statement gives you detailed information about the speci-
fied environment.

expand Since the number of job definitions in the table JOB_DEFINITIONS can
become very large, by default they are not all displayed. If the option expand = all
is used, all the job definitions as well as their parent folder and the folder hierar-
chy are outputted. Individual paths in the hierarchy can be selected by specifying
individual (folder) IDs.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The name of the environment
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
Continued on next page

313

Continued from previous page

Field Description
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
RESOURCES Table of static resources that form this environ-

ment
See also table 22.3 on page 314

JOB_DEFINITIONS Table of jobs and folders that use this environ-
ment
See also table 22.4 on page 314

Table 22.2.: Description of the output structure of the show environment statement

RESOURCES The layout of the RESOURCES table is shown in the table below.

Field Description
ID The repository object Id
NR_NAME Full path name of static Named Resources
CONDITION The condition that has to be fulfilled for the al-

location
PRIVS String containing the users privileges on the ob-

ject

Table 22.3.: Description of the output structure of the show environment subtable

JOB_DEFINITIONS The layout of the JOB_DEFINITIONS table is shown in the
table below.

Field Description
ID The repository object Id
SE_PATH Full folder path name of job definitions or fold-

ers
TYPE The object type. The possible values are

FOLDER and JOB_DEFINITION.
Continued on next page

314

Continued from previous page

Field Description
ENV An asterisk indicates that the current environ-

ment was specified here.
HAS_CHILDREN True means that there are more environment

users further down the tree.
PRIVS String containing the users privileges on the ob-

ject

Table 22.4.: Description of the output structure of the show environment subtable

315

show event

Purpose

Purpose The purpose of the show event statement is to get detailed information about the
specified event.

Syntax

Syntax The syntax for the show event statement is

show event eventname

Description

Description The show event statement gives you detailed information about the specified
event.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME Name of the show event
OWNER The group owning the object
SCHEDULING_ENTITY Batch or job that is submitted when this event

occurs
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PARAMETERS Parameters that are used when submitting the

job or batch
See also table 22.6 on page 317

PRIVS String containing the users privileges on the ob-
ject

Continued on next page

316

Continued from previous page

Field Description
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined

Table 22.5.: Description of the output structure of the show event statement

PARAMETERS The layout of the PARAMETERS table is shown in the table
below.

Field Description
ID The repository object Id
KEY Name of the parameter
VALUE Value of the parameter

Table 22.6.: Description of the output structure of the show event subtable

317

show exit state definition

Purpose

Purpose The purpose of the show exit state definition statement is to get detailed informa-
tion about the specified exit state definition.

Syntax

Syntax The syntax for the show exit state definition statement is

show exit state definition statename

Description

Description The show exit state definition statement gives you detailed information about the
specified Exit State Definition.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME Name of the Exit State Definition
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject

Table 22.7.: Description of the output structure of the show exit state definition
statement

318

show exit state mapping

Purpose

PurposeThe purpose of the show exist state mapping statement is to get detailed informa-
tion about the specified mapping.

Syntax

SyntaxThe syntax for the show exit state mapping statement is

show exit state mapping mappingname

Description

DescriptionThe show exit state mapping statement gives you detailed information about the
specified mapping.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
COMMENT A comment that can be freely selected by the

user
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
RANGES The assignment of the respective value ranges

shown in a table
See also table 22.9 on page 320

Table 22.8.: Description of the output structure of the show exit state mapping
statement

319

RANGES The layout of the RANGES table is shown in the table below.

Field Description
ECR_START Minimum limit of the range (inclusive)
ECR_END Maximum limit of the range (inclusive)
ESD_NAME Name of the Exit State to which this area is

mapped

Table 22.9.: Description of the output structure of the show exit state mapping
subtable

320

show exit state profile

Purpose

PurposeThe purpose of the show exist state profile statement is to get detailed information
about the specified profile.

Syntax

SyntaxThe syntax for the show exit state profile statement is

show exit state profile profilename

Description

DescriptionThe show exit state profile statement gives you detailed information about the spe-
cified profile.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
DEFAULT_ESM_NAME The default Exit State Mapping is active if the

job itself does not define something else.
IS_VALID Flag displayed showing the validity of this Exit

State Profile
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
Continued on next page

321

Continued from previous page

Field Description
STATES Table contains Exit States that are valid for this

profile
See also table 22.11 on page 322

Table 22.10.: Description of the output structure of the show exit state profile
statement

STATES The layout of the STATES table is shown in the table below.

Field Description
ID The repository object Id
PREFERENCE The preference for controlling the connection of

the Child Exit States
TYPE Indicates whether the state is FINAL, PEND-

ING or RESTARTABLE
ESD_NAME Name of the Exit State Definition
IS_UNREACHABLE Indicates that this Exit State is used when a job

is unreachable
IS_DISABLED Normally, a disabled job will take on the same

Exit State as an empty batch. However, if a FI-
NAL State is marked as Disabled, the default be-
haviour is disabled, and a disabled job will take
on that state.

IS_BROKEN Indicates that this Exit State is used when a job
is broken

IS_BATCH_DEFAULT Indicates that this Exit State is used when a
batch or milestone does not have any children

IS_DEPENDENCY_DEFAULT Indicates that this Exit State is used if the state
selection DEFAULT was selected in the Depen-
dency Definition

Table 22.11.: Description of the output structure of the show exit state profile
subtable

322

show exit state translation

Purpose

PurposeThe purpose of the show exit state translation statement is to get detailed informa-
tion about the specified exit state translation.

Syntax

SyntaxThe syntax for the show exit state translation statement is

show exit state translation transname

Description

DescriptionThe show exit state translation statement gives you detailed information about the
specified Exit State Translation.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME Name of the Exit State Translation
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
TRANSLATION Table of Exit State translations from child to par-

ent
See also table 22.13 on page 324

Table 22.12.: Description of the output structure of the show exit state translation
statement

323

TRANSLATION The layout of the TRANSLATION table is shown in the table
below.

Field Description
FROM_ESD_NAME Child exit state
TO_ESD_NAME Parent exit state

Table 22.13.: Description of the output structure of the show exit state translation
subtable

324

show folder

Purpose

PurposeThe purpose of the show folder statement is to get detailed information about the
specified folder.

Syntax

SyntaxThe syntax for the show folder statement is

show folder folderpath

Description

DescriptionThe show folder statement gives you detailed information about the specified
folder.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
PARENT_ID The ID of the parent.

NAME Name of the folder
OWNER The group owning the object
TYPE This states the type of object. The following op-

tions are available: Batch, Milestone, Job and
Folder.

ENVIRONMENT The name of the optional environment
INHERIT_PRIVS Privileges that are inherited from the parent

folder
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
Continued on next page

325

Continued from previous page

Field Description
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
PARAMETERS The parameters table shows all the defined con-

stants for this folder.
DEFINED_RESOURCES The Defined_Resources table shows all the re-

source instances that are defined for this folder.

Table 22.14.: Description of the output structure of the show folder statement

326

show footprint

Purpose

PurposeThe purpose of the show footprint statement is to get detailed information about
the specified footprint.

Syntax

SyntaxThe syntax for the show footprint statement is

show footprint footprintname [with EXPAND]

EXPAND:
expand = none

| expand = < (id {, id}) | all >

Description

DescriptionThe show footprint statement gives you detailed information about the specified
footprint.

expand Since the number of job definitions in the table JOB_DEFINITIONS can
become very large, by default they are not all displayed. If the option expand = all
is used, all the job definitions as well as their parent folder and the folder hierar-
chy are outputted. Individual paths in the hierarchy can be selected by specifying
individual (folder) IDs.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME Name of the footprint
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
Continued on next page

327

Continued from previous page

Field Description
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
RESOURCES Table of system resources that form this foot-

print
See also table 22.16 on page 328

JOB_DEFINITIONS Table of job definitions that use this footprint
See also table 22.17 on page 328

Table 22.15.: Description of the output structure of the show footprint statement

RESOURCES The layout of the RESOURCES table is shown in the table below.

Field Description
ID The repository object Id
RESOURCE_NAME Fully qualified path name of System Named Re-

sources
AMOUNT Amount of resource units that are allocated
KEEP_MODE The Keep_Mode specifies the time at which the

resource is released (FINISH, JOB_FINAL oder
FINAL)

Table 22.16.: Description of the output structure of the show footprint subtable

JOB_DEFINITIONS The layout of the JOB_DEFINITIONS table is shown in the
table below.

Field Description
ID The repository object Id
SE_PATH Folder path name of the object
TYPE Type of object
Continued on next page

328

Continued from previous page

Field Description
HAS_CHILDREN True means that there are more environment

users further down the tree.
PRIVS String containing the users privileges on the ob-

ject

Table 22.17.: Description of the output structure of the show footprint subtable

329

show group

Purpose

Purpose The purpose of the show group statement is to get detailed information about the
specified group.

Syntax

Syntax The syntax for the show group statement is

show group groupname

Description

Description The show group statement gives you detailed information about the specified
group.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME Name of the group
COMMENTTYPE Type of comment if a comment is defined
COMMENT Comment if defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
MANAGE_PRIVS Table of the manage privileges

See also table 22.19 on page 331
USERS Table of the user groups

See also table 22.20 on page 331

Table 22.18.: Description of the output structure of the show group statement

330

MANAGE_PRIVS The layout of the MANAGE_PRIVS table is shown in the
table below.

Field Description
PRIVS String containing the users privileges on the ob-

ject

Table 22.19.: Description of the output structure of the show group subtable

USERS The layout of the USERS table is shown in the table below.

Field Description
ID The repository object Id
UID Id of the user
NAME The object name
IS_ENABLED This flag tells the user whether he can be con-

nected.
DEFAULT_GROUP The default group of this user
PRIVS String containing the users privileges on the ob-

ject

Table 22.20.: Description of the output structure of the show group subtable

331

show interval

Purpose

Purpose The purpose of the show interval statement is to get detailed information about
the interval.

Syntax

Syntax The syntax for the show interval statement is

show interval intervalname [(id)] [with day between datetime and
datetime [, limit = integer]]

Description

Description The show interval statement displays detailed information about an interval. By
specifying a period, the generated blocks are returned for this period. The rising
edges (start times) of the blocks are the times at which jobs would be submitted if
the interval is used as a driver. If the interval is used as a filter, however, the rising
edges generated by a driver interval are let through if they lie between a rising edge
(inclusive) and the associated end of the block (exclusive).

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
STARTTIME The beginning of the interval. No edges are gen-

erated before this time.
ENDTIME The end of the interval. No edges are generated

after this time.
BASE The period of the interval
DURATION The duration of a block
Continued on next page

332

Continued from previous page

Field Description
SYNCTIME The time with which the interval is synchro-

nised. The first period of the interval starts at
this time.

INVERSE The definition whether the selection list should
be regarded as being positive or negative

EMBEDDED The interval from which a selection is subse-
quently made

SELECTION Single blocks are selected using Selection.
See also table 22.22 on page 334

FILTER Name(s) of the intervals that filter (multiplica-
tion) the output of this interval more finely
See also table 22.23 on page 334

DISPATCHER The Dispatch table is only relevant for Dispatch
intervals. It gives detailed information about
the Dispatch functionality.
See also table 22.24 on page 334

HIERARCHY The Hierarchy table shows the hierarchical
structure of an interval.
See also table 22.25 on page 335

REFERENCES This field is not yet documented
See also table 22.26 on page 337

CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
OWNER_OBJ_TYPE If an interval belongs to another object, the type

of the parent object is stated in this field.
OWNER_OBJ_ID If an interval belongs to another object, the ID of

the parent object is stated in this field.
SE_ID If an interval has been created as part of a sched-

ule for a Job Definition, the job ID is set in the
interval.

COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
Continued on next page

333

Continued from previous page

Field Description
EDGES If requested, a list of trigger times is returned.

See also table 22.27 on page 337

Table 22.21.: Description of the output structure of the show interval statement

SELECTION The layout of the SELECTION table is shown in the table below.

Field Description
ID The repository object Id
VALUE Number of the selected edge
PERIOD_FROM Beginning of the period in which all the occur-

ring edges are considered to have been selected
PERIOD_TO End of the period in which all the occurring

edges are considered to have been selected

Table 22.22.: Description of the output structure of the show interval subtable

FILTER The layout of the FILTER table is shown in the table below.

Field Description
ID The repository object Id
CHILD Name of the filtering interval

Table 22.23.: Description of the output structure of the show interval subtable

DISPATCHER The layout of the DISPATCHER table is shown in the table be-
low.

Field Description
ID The repository object Id
SEQNO The seqno field defines the sequence for the Dis-

patch rules.
NAME To make the Dispatch rules easier to under-

stand, each rule has a name.
Continued on next page

334

Continued from previous page

Field Description
SELECT_INTERVAL_ID The ID of the interval that defines the time peri-

ods in which the rule applies.
SELECT_INTERVAL_NAME The name of the interval that defines the time

periods in which the rule applies.
FILTER_INTERVAL_ID The ID of the interval to be valuated at the times

defined by the Select interval.
FILTER_INTERVAL_NAME The name of the interval to be valuated at the

times defined by the Select interval.
IS_ENABLED This field specifies whether the rule is to be val-

uated or not.
IS_ACTIVE This field defines whether the Filter interval is

valuated or not. If the Filter interval is not valu-
ated, nothing is let through.

Table 22.24.: Description of the output structure of the show interval subtable

HIERARCHY The layout of the HIERARCHY table is shown in the table below.

Field Description
ID The repository object Id
LEVEL The level specifies the hierarchy level on which

the described object is located.
ROLE The role field specifies the object’s role. The fol-

lowing possibilities are available:
Role Meaning
HEAD Top level Object
FILTER Filter interval
EMBEDDED Embedded interval
DISPATCH Dispatch interval
DISPATCH_SELECT Select interval of a Dispatch rule
DISPATCH_FILTER Filter interval of a Dispatch rule

PARENT The parent field specifies which object is the
parent object in the hierarchy.

NAME The name of the interval.
SEQNO The seqno field defines the sequence for the Dis-

patch rules.
Continued on next page

335

Continued from previous page

Field Description
SELECT_INTERVAL_NAME The name of the interval that defines the time

periods in which the rule applies.
FILTER_INTERVAL_NAME The name of the interval to be valuated at the

times defined by the Select interval.
IS_ENABLED This field specifies whether the rule is to be val-

uated or not.
IS_ACTIVE This field defines whether the Filter interval is

valuated or not. If the Filter interval is not valu-
ated, nothing is let through.

OWNER The group owning the object
STARTTIME The beginning of the interval. No edges are gen-

erated before this time.
ENDTIME The end of the interval. No edges are generated

after this time.
BASE The period of the interval
DURATION The duration of a block
SYNCTIME The time with which the interval is synchro-

nised. The first period of the interval starts at
this time.

INVERSE The definition whether the selection list should
be regarded as being positive or negative

EMBEDDED The interval from which a selection is subse-
quently made

SELECTION Single blocks are selected using Selection.
FILTER Name(s) of the intervals that filter (multiplica-

tion) the output of this interval more finely
DISPATCHER Name(s) of the intervals that filter (multiplica-

tion) the output of this interval more finely
OWNER_OBJ_TYPE If an interval belongs to another object, the type

of the parent object is stated in this field.
OWNER_OBJ_ID If an interval belongs to another object, the ID of

the parent object is stated in this field.

Table 22.25.: Description of the output structure of the show interval subtable

REFERENCES The layout of the REFERENCES table is shown in the table be-
low.

336

Field Description
REFERER_ID This field is not yet documented
REFERER_NAME This field is not yet documented
REFERER_TYPE This field is not yet documented
REFERENCE_TYPE This field is not yet documented
CHILD_ID This field is not yet documented
CHILD_NAME This field is not yet documented
CHILD_TYPE This field is not yet documented
REFERENCE_PATH This field is not yet documented

Table 22.26.: Description of the output structure of the show interval subtable

EDGES The layout of the EDGES table is shown in the table below.

Field Description
TRIGGER_DATE Time stamp of the rising edge. If the interval is

used as a driver, triggering takes place at such
times.

BLOCK_END The end of the block. If the interval is used as a
filter, all trigger times between trigger_date and
block_end are let through. The value has no sig-
nificance for drivers.

Table 22.27.: Description of the output structure of the show interval subtable

337

show job

Purpose

Purpose The purpose of the show job statement is to get detailed information about the
specified job.

Syntax

Syntax The syntax for the show job statement is

show job jobid [with WITHITEM {, WITHITEM}]

show job submittag = string [with WITHITEM {, WITHITEM}]

WITHITEM:
filter = (FILTERITEM {, FILTERITEM})

| recursive audit

FILTERITEM:
approval REQUEST

| approve
| cancel
| change priority
| clear warning
| clone
| comment
| disable
| enable
| ignore named resource
| ignore resource
| ignore dependency [recursive]
| job in error
| kill
| reject
| renice
| rerun [recursive]
| restartable
| resume
| review REQUEST
| set exit state
| set parameter

338

| set resource state
| set state
| set warning
| submit [suspend]
| suspend
| timeout
| trigger failure
| trigger submit
| unreachable

Description

DescriptionThe show job statement gives you detailed information about the specified job.
The job can be specified using either its Id or, if a submit tag was specified during
the submit, the submit tag.
The filter option is used for selecting audit entries. If the filter option is not speci-
fied, all the audit entries are shown. Otherwise, only entries of the type specified
in the filter are outputted.
The recursive audit option collects all the audit messages for the displayed job and
its direct or indirect children.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
SE_NAME The full path name of the object
SE_OWNER Owner of the object
SE_TYPE The Se_Type is the object type (JOB, BATCH or

MILESTONE).
SE_RUN_PROGRAM The Run_Program line in the job definition
SE_RERUN_PROGRAM The Rerun_Program line in the job definition
SE_KILL_PROGRAM The Kill_Program line in the job definition
SE_WORKDIR The Workdir of the job definition
SE_LOGFILE The log file of the job definition
SE_TRUNC_LOG Defines whether the log file is to be truncated

before the process starts or if the log information
is to be appended

Continued on next page

339

Continued from previous page

Field Description
SE_ERRLOGFILE The error log file of the job definition
SE_TRUNC_ERRLOG Defines whether the log file is to be truncated

before the process starts or if the log information
is to be appended

SE_EXPECTED_RUNTIME The anticipated runtime of the job definition
SE_PRIORITY Priority/nice value of the job definition
SE_SUBMIT_SUSPENDED The Suspend Flag of the object
SE_MASTER_SUBMITTABLE The Master_Submittable Flag of the object
SE_DEPENDENCY_MODE The Dependency_Mode of the object
SE_ESP_NAME The Exit State Profile of the object
SE_ESM_NAME The Exit State Mapping the job definition
SE_ENV_NAME The environment of the job definition
SE_FP_NAME The footprint of the job definition
MASTER_ID This is the ID of the Master Job.

TIME_ZONE The applicable time zone for the job

CHILD_TAG Tag for exclusive identifying jobs that have been
submitted several times as children of the same
job

SE_VERSION The version of definitions that are valid for this
Submitted Entity

OWNER The group owning the object
PARENT_ID This is the Id of the parent.
SCOPE_ID The scope or jobserver to which the job is allo-

cated
HTTPHOST The host name of the scope for accessing log

files via HTTP
HTTPPORT The HTTP port number of the jobserver for ac-

cessing log files via HTTP
IS_STATIC Flag indicating the static or dynamic submits of

this job
MERGE_MODE Indicates how multiple submits of the same de-

fined object are handled in the current Master
Run

STATE The State is the current state of the job.
Continued on next page

340

Continued from previous page

Field Description
IS_DISABLED Indicates whether the submitted entitity is dis-

abled
IS_PARENT_DISABLED Indicates whether the submitted entitity is dis-

abled
IS_CANCELLED Indicates whether a Cancel operation was per-

formed on the job
JOB_ESD_ID The Job_Esd is the Exit State of the job.
JOB_ESD_PREF The preference for merging the Job Exit States

with the Child States
JOB_IS_FINAL This field defines whether the job itself is final.
JOB_IS_RESTARTABLE A flag indicating that this job is restartable
FINAL_ESD_ID The final (merged) Exit State of the object
EXIT_CODE The Exit_Code of the executed process
COMMANDLINE The created command line that is used for the

first execution
RR_COMMANDLINE Created rerun command line that is used for the

last executed rerun
WORKDIR Name of the working directory of the utility

process
LOGFILE Name of the utility process log file. The output

to stdout is written in this log.
ERRLOGFILE The created error log file
PID The PID is the process identification number of

the monitoring jobserver process on the respec-
tive host system.

EXT_PID The EXT_PID is the process identification num-
ber of the utility process.

ERROR_MSG The error message describing why the job
switched to the error state.

KILL_ID The Submitted Entity Id of the submitted Kill
Job

KILL_EXIT_CODE The Exit Code of the last executed Kill Program
IS_SUSPENDED This field defines whether the job or batch itself

is suspended.
IS_SUSPENDED_LOCAL Flag indicating whether the object is locally sus-

pended (for restart trigger with suspend)
Continued on next page

341

Continued from previous page

Field Description
PRIORITY The static priority of a job. This is derived from

the defined priority and the nice values of the
parent(s).

RAW_PRIORITY The raw priority value of the job. Unlike the pri-
ority, this value is practically unbounded. This
is required in order to be able to restore the cor-
rect priority after Nice Profile manipulations.

NICEVALUE The current nice value of the job
NP_NICEVALUE The np_nicevalue is the nice value which is the

effect of activating (and deactivating) nice pro-
files.

MIN_PRIORITY This is the minimum value for the dynamic pri-
ority.

AGING_AMOUNT The Aging_Amount defines after how many
time units the dynamic priority of a job is in-
cremented by one point.

AGING_BASE The Aging_Base defines the time unit for the
Aging Amount.

DYNAMIC_PRIORITY The Dynamic_Priority of the job. This is the
static priority that was corrected dependent on
the delay time.

PARENT_SUSPENDED This field defines whether the job or batch is sus-
pended through one of its parents.

CANCEL_APPROVAL Effective Approval setting for the Cancel opera-
tion

RERUN_APPROVAL Effective Approval setting for the cwRerunCan-
cel operation

ENABLE_APPROVAL Effective Approval setting for the Enable or Dis-
able operation

SET_STATE_APPROVAL Effective Approval setting for the Set State op-
eration

IGN_DEPENDENCY_APPROVALEffective Approval setting for the Ignore Depen-
dency operation

Continued on next page

342

Continued from previous page

Field Description
IGN_RESOURCE_APPROVAL Effective Approval setting for the Ignore Re-

source operation

CLONE_APPROVAL Effective Approval setting for the Clone opera-
tion

EDIT_PARAMETER_APPROVALEffective Approval setting for the Edit Parame-
ter operation

KILL_APPROVAL Effective Approval setting for the Kill operation

SET_JOB_STATE_APPROVAL Effective Approval setting for the Set Job State
operation

SUBMIT_TS This is the time when the job is submitted
RESUME_TS The time when the job is automatically resumed
SYNC_TS The time when the job switched to the state syn-

chronize_wait
RESOURCE_TS The time when the job switched to the state Re-

source_wait
RUNNABLE_TS The time when the job reached the state

Runnable
START_TS The time when the job was reported by the job-

server as having been started
FINISH_TS This is the time when the job is finished.
FINAL_TS The time when the job reached the state Final
CNT_SUBMITTED The number of children in a Submitted state
CNT_DEPENDENCY_WAIT The number of children in a Dependcy_Wait

state
CNT_SYNCHRONIZE_WAIT The number of children in a Synchronize_Wait

state
CNT_RESOURCE_WAIT The number of children in a Resource_Wait state
CNT_RUNNABLE The number of children in a Runnable state
CNT_STARTING The number of children in a Starting state
CNT_STARTED The number of children in a Started state
CNT_RUNNING The number of children in a Running state
CNT_TO_KILL The number of children in a To_Kill state
Continued on next page

343

Continued from previous page

Field Description
CNT_KILLED The number of children in a Killed state
CNT_CANCELLED The number of children in a Cancelled state
CNT_FINISHED The number of children in a Finished state
CNT_FINAL The number of children in a Final state
CNT_BROKEN_ACTIVE The number of children in a Broken_Active state
CNT_BROKEN_FINISHED The number of children in a Broken_Finished

state
CNT_ERROR The number of children in an Error state
CNT_RESTARTABLE The number of children in a Restartable state
CNT_UNREACHABLE The number of children in a Unreachable state
CNT_WARN The number of children with a warning
WARN_COUNT This is the number of unattended warnings.
IDLE_TIME The time the job was idle respectively waiting
DEPENDENCY_WAIT_TIME The time the job resided in the Depen-

dency_Wait state
SUSPEND_TIME The time the job was suspended
SYNC_TIME The time the job resided in the Synchro-

nize_Wait state
RESOURCE_TIME The time the job resided in the Resource_Wait

state
JOBSERVER_TIME The time the job was under control of a job-

server
RESTARTABLE_TIME The time the job was in a Restartable state (wait-

ing for a Rerun or Cancel)
CHILD_WAIT_TIME The time the job waited for its children to reach

a final state
PROCESS_TIME The time a job was running or could have been

running if enough resources would have been
available. Hence the time from submit until fi-
nal without the time it was waiting for depen-
dencies.

ACTIVE_TIME The time the job was active
IDLE_PCT The percentage of the total time that a job was

considered to be active
CHILDREN The number of children of the job or batch

See also table 22.29 on page 346
PARENTS Table of the parents
Continued on next page

344

Continued from previous page

Field Description
See also table 22.30 on page 347

PARAMETER Table of the parameters
See also table 22.31 on page 347

REQUIRED_JOBS Table of objects upon which the following ob-
jects are dependent
See also table 22.32 on page 348

DEPENDENT_JOBS Table of the dependent jobs
See also table 22.33 on page 350

REQUIRED_RESOURCES Table of the required resources
See also table 22.34 on page 352

SUBMIT_PATH The path from the job to the master via the sub-
mit hierarchy

IS_REPLACED This field defines whether the job or batch has
been replaced by another one.

TIMEOUT_AMOUNT The maximum time that the job will wait for its
resource

TIMEOUT_BASE The unit that is used to specify the timeout in
seconds, minutes, hours or days

TIMEOUT_STATE The timeout of the Scheduling Entity
RERUN_SEQ The rerun order
AUDIT_TRAIL Table of the log entries

See also table 22.35 on page 354
CHILD_SUSPENDED The number of children that have been sus-

pended
CNT_PENDING The number of children in a Pending state
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
SE_PRIVS Privileges for the Scheduling Entity
SUBMITTAG Unique marker that is given at the submit time
APPROVAL_PENDING This field indicates whether one or more ap-

provals or reviews are currently waiting to be
processed

Continued on next page

345

Continued from previous page

Field Description
UNRESOLVED_HANDLING Defines what to do if the required object cannot

be found
DEFINED_RESOURCES Table of the Defined Resources of the object

See also table 22.36 on page 354
RUNS Table of the Defined Resources of the object

See also table 22.37 on page 355

Table 22.28.: Description of the output structure of the show job statement

CHILDREN The layout of the CHILDREN table is shown in the table below.

Field Description
CHILDID The Submitted Entity Id of the child
CHILDPRIVS The privileges for the child object
CHILDSENAME The name of the child object
CHILDSETYPE The type of child object
CHILDSEPRIVS The privileges for the child object
PARENTID The Id of the parent
PARENTPRIVS The privileges for the parent object
PARENTSENAME The name of the parent object
PARENTSETYPE The type of parent object
PARENTSEPRIVS The privileges for the job definition that belong

to the parent
IS_STATIC Static flag of the hierarchy definition
PRIORITY The priority of the hierarchy definition
SUSPEND The suspend mode of the hierarchy definition
MERGE_MODE The merge mode of the hierarchy definition
EST_NAME The name of the Exit State Translation of the hi-

erarchy definition
IGNORED_DEPENDENCIES Ignored Dependencies flag of the hierarchy de-

finition

Table 22.29.: Description of the output structure of the show job subtable

PARENTS The layout of the PARENTS table is shown in the table below.

346

Field Description
CHILDID The Submitted Entity Id of the child
CHILDPRIVS The privileges for the child object
CHILDSENAME The name of the child object
CHILDSETYPE The type of child object
CHILDSEPRIVS The privileges for the child object
PARENTID The Id of the parent
PARENTPRIVS The privileges for the parent object
PARENTSENAME The name of the parent object
PARENTSETYPE The type of parent object
PARENTSEPRIVS The privileges for the job definition that belong

to the parent
IS_STATIC Static flag of the hierarchy definition
PRIORITY The priority of the hierarchy definition
SUSPEND The suspend mode of the hierarchy definition
MERGE_MODE The merge mode of the hierarchy definition
EST_NAME The name of the Exit State Translation of the hi-

erarchy definition
IGNORED_DEPENDENCIES Ignored Dependencies flag of the hierarchy de-

finition

Table 22.30.: Description of the output structure of the show job subtable

PARAMETER The layout of the PARAMETER table is shown in the table below.

Field Description
ID The repository object Id
NAME The name of the parameter, variable or expres-

sion
TYPE The type of parameter, variable or expression
VALUE The value of the parameter, variable or expres-

sion

Table 22.31.: Description of the output structure of the show job subtable

REQUIRED_JOBS The layout of the REQUIRED_JOBS table is shown in the
table below.

347

Field Description
ID The repository object Id
DEPENDENT_ID Id of the dependent Submitted Entity
DEPENDENT_PATH The path from the job to the master via the sub-

mit hierarchy
DEPENDENT_PRIVS The privileges for the dependent object
DEPENDENT_ID_ORIG Id of the original dependent Submitted Entity

on which the dependency is defined for depen-
dencies that have been inherited from the par-
ents

DEPENDENT_PATH_ORIG The path from the dependent object to the mas-
ter via the submit hierarchy

DEPENDENT_PRIVS_ORIG The privileges for the original dependent object
DEPENDENCY_OPERATION Defines whether all or only some dependencies

of the original object have to be fulfilled
REQUIRED_ID Id of the required Submitted Entity
REQUIRED_PATH The path from the required object to the master

via the submit hierarchy
REQUIRED_PRIVS The privileges for the required object
STATE The state of the dependency (OPEN, FUL-

FILLED or FAILED)
DD_ID Id of the Dependency Definition object
DD_NAME Name of the Dependency Definition
DD_DEPENDENTNAME The full path name of the object
DD_DEPENDENTTYPE The type of dependent object
DD_DEPENDENTPRIVS Privileges for the dependent object
DD_REQUIREDNAME Path name of the definition of the dependent ob-

ject
DD_REQUIREDTYPE The type of required object
DD_REQUIREDPRIVS The privileges for the required object definition
DD_UNRESOLVED_

HANDLING

Specifies how to handle unresolvable depen-
dencies during a submit

DD_STATE_SELECTION The State Selection defines how the required
Exit States are determined. The options here are
FINAL, ALL_REACHABLE, UNREACHABLE
and DEFAULT. In the case of FINAL, the re-
quired Exit States can be explicitly listed.

Continued on next page

348

Continued from previous page

Field Description
DD_MODE Defines whether just the required job itself or

the required job together with its children have
to be final

DD_STATES List of Exit States that the required object have
to achieve to fulfil the dependency

JOB_STATE In the Job State list, you can filter for jobs that
have the entered Job State.

IS_SUSPENDED This field defines whether the job or batch itself
is suspended.

PARENT_SUSPENDED This field defines whether the job is suspended
(True) or not (False) through one of its parents.

CNT_SUBMITTED The number of children in a Submitted state
CNT_DEPENDENCY_WAIT The number of children in a Dependcy_Wait

state
CNT_SYNCHRONIZE_WAIT The number of children in a Synchronize_Wait

state
CNT_RESOURCE_WAIT The number of children in a Resource_Wait state
CNT_RUNNABLE The number of children in a Runnable state
CNT_STARTING The number of children in a Starting state
CNT_STARTED The number of children in a Started state
CNT_RUNNING The number of children in a Running state
CNT_TO_KILL The number of children in a To_Kill state
CNT_KILLED The number of children in a Killed state
CNT_CANCELLED The number of children in a Cancelled state
CNT_FINISHED The number of children in a Finished state
CNT_FINAL The number of children in a Final state
CNT_BROKEN_ACTIVE The number of children in a Broken_Active state
CNT_BROKEN_FINISHED The number of children in a Broken_Finished

state
CNT_ERROR The number of children in an Error state
CNT_RESTARTABLE The number of children in a Restartable state
CNT_UNREACHABLE The number of children in a Unreachable state
JOB_IS_FINAL The number of Child Jobs in an Is_Final state
CHILD_TAG Tag for exclusive identifying jobs that have been

submitted several times as children of the same
job

FINAL_STATE The final state of a job
Continued on next page

349

Continued from previous page

Field Description
CHILDREN The number of children of the job or batch
IGNORE Flag indicating whether the Resource Allocation

is bring ignored
CHILD_SUSPENDED The number of children that have been sus-

pended
CNT_PENDING The number of children in a Pending state
DD_CONDITION The condition that has to be additionally ful-

filled for the dependency to be fulfilled

Table 22.32.: Description of the output structure of the show job subtable

DEPENDENT_JOBS The layout of the DEPENDENT_JOBS table is shown in
the table below.

Field Description
ID The repository object Id
DEPENDENT_ID Id of the dependent Submitted Entity
DEPENDENT_PATH The path from the job to the master via the sub-

mit hierarchy
DEPENDENT_PRIVS The privileges for the dependent object
DEPENDENT_ID_ORIG Id of the original dependent Submitted Entity

on which the dependency is defined for depen-
dencies that have been inherited from the par-
ents

DEPENDENT_PATH_ORIG The path from the dependent object to the mas-
ter via the submit hierarchy

DEPENDENT_PRIVS_ORIG The privileges for the original dependent object
DEPENDENCY_OPERATION Defines whether all or only some dependencies

of the original object have to be fulfilled
REQUIRED_ID Id of the required Submitted Entity
REQUIRED_PATH The path from the required object to the master

via the submit hierarchy
REQUIRED_PRIVS The privileges for the required object
STATE The state of the dependency (OPEN, FUL-

FILLED or FAILED)
DD_ID Id of the Dependency Definition object
DD_NAME Name of the Dependency Definition
Continued on next page

350

Continued from previous page

Field Description
DD_DEPENDENTNAME The full path name of the object
DD_DEPENDENTTYPE The type of dependent object
DD_DEPENDENTPRIVS Privileges for the dependent object
DD_REQUIREDNAME Path name of the definition of the dependent ob-

ject
DD_REQUIREDTYPE The type of required object
DD_REQUIREDPRIVS The privileges for the required object definition
DD_UNRESOLVED_

HANDLING

Specifies how to handle unresolvable depen-
dencies during a submit

DD_STATE_SELECTION The State Selection defines how the required
Exit States are determined. The options here are
FINAL, ALL_REACHABLE, UNREACHABLE
and DEFAULT. In the case of FINAL, the re-
quired Exit States can be explicitly listed.

DD_MODE Defines whether just the required job itself or
the required job together with its children have
to be final

DD_STATES List of Exit States that the required object have
to achieve to fulfil the dependency

JOB_STATE In the Job State list, you can filter for jobs that
have the entered Job State.

IS_SUSPENDED This field defines whether the job or batch itself
is suspended.

PARENT_SUSPENDED This field defines whether the job is suspended
(True) or not (False) through one of its parents.

CNT_SUBMITTED The number of children in a Submitted state
CNT_DEPENDENCY_WAIT The number of children in a Dependcy_Wait

state
CNT_SYNCHRONIZE_WAIT The number of children in a Synchronize_Wait

state
CNT_RESOURCE_WAIT The number of children in a Resource_Wait state
CNT_RUNNABLE The number of children in a Runnable state
CNT_STARTING The number of children in a Starting state
CNT_STARTED The number of children in a Started state
CNT_RUNNING The number of children in a Running state
CNT_TO_KILL The number of children in a To_Kill state
CNT_KILLED The number of children in a Killed state
Continued on next page

351

Continued from previous page

Field Description
CNT_CANCELLED The number of children in a Cancelled state
CNT_FINISHED The number of children in a Finished state
CNT_FINAL The number of children in a Final state
CNT_BROKEN_ACTIVE The number of children in a Broken_Active state
CNT_BROKEN_FINISHED The number of children in a Broken_Finished

state
CNT_ERROR The number of children in an Error state
CNT_RESTARTABLE The number of children in a Restartable state
CNT_UNREACHABLE The number of children in a Unreachable state
JOB_IS_FINAL The number of Child Jobs in an Is_Final state
CHILD_TAG Tag for exclusive identifying jobs that have been

submitted several times as children of the same
job

FINAL_STATE The final state of a job
CHILDREN The number of children of the job or batch
IGNORE Flag indicating whether the Resource Allocation

is bring ignored
CHILD_SUSPENDED The number of children that have been sus-

pended
CNT_PENDING The number of children in a Pending state
DD_CONDITION The condition that has to be additionally ful-

filled for the dependency to be fulfilled

Table 22.33.: Description of the output structure of the show job subtable

REQUIRED_RESOURCES The layout of the REQUIRED_RESOURCES table
is shown in the table below.

Field Description
SCOPE_ID Id of the scope that allocated the resource
SCOPE_NAME The fully qualified name of the scope
SCOPE_TYPE The type of scope (SCOPE or SERVER,

FOLDER, BATCH or JOB)
SCOPE_PRIVS The privileges for the scope
RESOURCE_ID Id of the Required Resource
RESOURCE_NAME Categorical path name of the Requested Re-

source
Continued on next page

352

Continued from previous page

Field Description
RESOURCE_USAGE The usage of the required resource (STATIC,

SYSTEM or SYNCHRONIZING)
RESOURCE_OWNER Name of the owner of the Requested Resource
RESOURCE_PRIVS The privileges for the Requested Resource
RESOURCE_STATE The state of the Requested Resource
RESOURCE_TIMESTAMP Date time of last time state was set for the re-

quested resource
REQUESTABLE_AMOUNT The maximum amount of resources that can be

requested by a job
TOTAL_AMOUNT The complete amount that can be allocated
FREE_AMOUNT The Free_Amount that can be allocated
REQUESTED_AMOUNT This is the requested amount
REQUESTED_LOCKMODE The requested lockmode
REQUESTED_STATES The requested Resource State
RESERVED_AMOUNT The amount that is reserved by the Requested

Resource
ALLOCATED_AMOUNT The amount that was allocated by the Re-

quested Resource
ALLOCATED_LOCKMODE The lockmode currently allocated by the Re-

quested Resource
IGNORE Flag indicating whether the Resource Allocation

is bring ignored
STICKY Flag indicating whether it is a Sticky Resource

Allocation
STICKY_NAME Optional name of the sticky resource request
STICKY_PARENT Parent job within which the sticky request is

evaluated
STICKY_PARENT_TYPE Type of the parent within which the sticky re-

quirement is evaluated
ONLINE Flag indicating whether the resource is available

for an allocation
ALLOCATE_STATE The state of the allocation (RESERVED, ALLO-

CATED, AVAILABLE or BLOCKED)
EXPIRE Time defining the maximum or minimum age

of a resource depending on whether the expire
is positive or negative

Continued on next page

353

Continued from previous page

Field Description
EXPIRE_SIGN Defines the expiration condition, +/- indicating

younger/older than
IGNORE_ON_RERUN This flag indicates if the expire condition should

be ignored in case of a rerun.
DEFINITION Where the Resource Definition is saved

Table 22.34.: Description of the output structure of the show job subtable

AUDIT_TRAIL The layout of the AUDIT_TRAIL table is shown in the table be-
low.

Field Description
ID The repository object Id
USERNAME User name that causes this audit record
TIME The time when this audit record was created
TXID Transaction number of the change
ACTION Action that causes this audit record
ORIGINID The original object Id that causes this audit

record
JOBID The Id of the job for which this audit entry is

written
JOBNAME The name of the job for which this audit entry is

written
COMMENT Comment if defined
INFO Additional system information about the Action

Event that caused the audit record

Table 22.35.: Description of the output structure of the show job subtable

DEFINED_RESOURCES The layout of the DEFINED_RESOURCES table is
shown in the table below.

Field Description
ID Id of the Defined Resource
RESOURCE_NAME Full path name of the Defined Object
Continued on next page

354

Continued from previous page

Field Description
RESOURCE_USAGE The usage of the required resource (STATIC,

SYSTEM or SYNCHRONIZING)
RESOURCE_OWNER The owner of the resource
RESOURCE_PRIVS The privileges for the resource
RESOURCE_STATE The current state of the resource
RESOURCE_TIMESTAMP Date time of last time state was set for the re-

quested resource
REQUESTABLE_AMOUNT The maximum amount of resources that can be

requested by a job
TOTAL_AMOUNT The complete amount that can be allocated
FREE_AMOUNT The Free_Amount that can be allocated
ONLINE Indicates whether the resource can be allocated

or not

Table 22.36.: Description of the output structure of the show job subtable

RUNS The layout of the RUNS table is shown in the table below.

Field Description
RERUN_SEQ The rerun order
SCOPE_ID The scope or jobserver to which the job is allo-

cated
HTTPHOST The host name of the scope for accessing log

files via HTTP
HTTPPORT The HTTP port number of the jobserver for ac-

cessing log files via HTTP
JOB_ESD_ID The Job_Esd is the Exit State of the job.
EXIT_CODE The Exit_Code of the executed process
COMMANDLINE The created command line that is used for the

first execution
WORKDIR Name of the working directory of the utility

process
LOGFILE Name of the utility process log file. The output

to stdout is written in this log.
ERRLOGFILE The created error log file
EXT_PID The EXT_PID is the process identification num-

ber of the utility process.
Continued on next page

355

Continued from previous page

Field Description
SYNC_TS The time when the job switched to the state syn-

chronize_wait
RESOURCE_TS The time when the job switched to the state Re-

source_wait
RUNNABLE_TS The time when the job reached the state

Runnable
START_TS The time when the job was reported by the job-

server as having been started
FINISH_TS This is the time when the job is finished.

Table 22.37.: Description of the output structure of the show job subtable

356

show job definition

Purpose

PurposeThe purpose of the show job definition statement is to get detailed information
about the specified job definition.

Syntax

SyntaxThe syntax for the show job definition statement is

show job definition folderpath

Description

DescriptionThe show job definition statement gives you detailed information about the speci-
fied job definition.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
PARENT_ID The ID of the parent.

NAME The full path name of the job definition
OWNER The group owning the object
TYPE This states the type of object. The following op-

tions are available: Batch, Milestone, Job and
Folder.

INHERIT_PRIVS Privileges that are inherited from the parent
folder

RUN_PROGRAM A command line that starts the script or pro-
gram can be specified in the Run_Program field.

RERUN_PROGRAM The Rerun_Program field specifies the com-
mand that is to be executed when repeating the
job following an error (rerun).

Continued on next page

357

Continued from previous page

Field Description
KILL_PROGRAM The Kill_Program field determines which pro-

gram is to be run to terminate a currently run-
ning job.

WORKDIR This is the working directory of the current job.
LOGFILE The Logfile field specifies the file in which all

the normal outputs of the Run program are to
be returned. These are usually all the outputs
that use the standard output channel (STDOUT
under UNIX).

TRUNC_LOG Defines whether the log file is to be renewed or
not

ERRLOGFILE The Error Logfile field specifies the file in which
all the error outputs from the Run_program are
to be returned.

TRUNC_ERRLOG Defines whether the Error log file is to be re-
newed or not

EXPECTED_RUNTIME The Expected_Runtime describes the antici-
pated time that will be required to execute a job.

EXPECTED_FINALTIME The Expected_Finaltime describes the antici-
pated time that will be required to execute a job
or batch together with its children.

PRIORITY The Priority field indicates the urgency with
which the process, if it is to be started, is to be
considered by the Scheduling System.

MIN_PRIORITY This is the minimum effective priority that can
be achieved through natural aging.

AGING_AMOUNT The number of time units after which the effec-
tive priority is incremented by 1.

AGING_BASE The time unit that is used for the aging interval
SUBMIT_SUSPENDED Flag that indicates whether the object is to be

suspended after the submit
RESUME_AT If the job is to be submitted as being suspended,

an automatic resume takes place at the given
time.

RESUME_IN If the job is to be submitted as being suspended,
an automatic resume takes place after the given
number of time units.

RESUME_BASE Specified time unit for RESUME_IN
Continued on next page

358

Continued from previous page

Field Description
MASTER_SUBMITTABLE The job that is started by the trigger is submit-

ted as its own Master Job and does not have any
influence on the current Master Job run of the
triggering job.

TIMEOUT_AMOUNT The number of time units for the delay until the
timeout occurs

TIMEOUT_BASE The unit that is used to specify the timeout in
seconds, minutes, hours or days

TIMEOUT_STATE The timeout of the Scheduling Entity
DEPENDENCY_MODE The Dependency Mode states the context in

which the list of dependencies has to be viewed.
The following options are available: ALL and
ANY.

ESP_NAME This is the name of the Exit State Profile.
ESM_NAME This is the name of the Exit State Mapping.
ENV_NAME This is the name of the environment.
CANCEL_LEAD_FLAG The Lead flag indicates whether the Approval

setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

CANCEL_APPROVAL The Approval setting for the Cancel operation

RERUN_LEAD_FLAG The Lead flag indicates whether the Approval
setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

RERUN_APPROVAL The Approval setting for the Rerun operation

ENABLE_LEAD_FLAG The Lead flag indicates whether the Approval
setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

ENABLE_APPROVAL The effective Approval setting for the Enable or
Disable operation

Continued on next page

359

Continued from previous page

Field Description
SET_STATE_LEAD_FLAG The Lead flag indicates whether the Approval

setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

SET_STATE_APPROVAL The Approval setting for the Set State operation

IGN_DEPENDENCY_LEAD_FLAGThe Lead flag indicates whether the Approval
setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

IGN_DEPENDENCY_APPROVALThe Approval setting for the Ignore Depen-
dency operation

IGN_RESOURCE_LEAD_FLAG The Lead flag indicates whether the Approval
setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

IGN_RESOURCE_APPROVAL The Approval setting for the Ignore Resource
operation

CLONE_LEAD_FLAG The Lead flag indicates whether the Approval
setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

CLONE_APPROVAL The Approval setting for the Clone operation

EDIT_PARAMETER_LEAD_FLAGThe Lead flag indicates whether the Approval
setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

EDIT_PARAMETER_APPROVALThe Approval setting for the Edit Parameter op-
eration

Continued on next page

360

Continued from previous page

Field Description
KILL_LEAD_FLAG The Lead flag indicates whether the Approval

setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

KILL_APPROVAL The Approval setting for the Kill operation

SET_JOB_STATE_LEAD_FLAG The Lead flag indicates whether the Approval
setting should also apply to all children. The
Approval settings cannot be relaxed but only
tightened up.

SET_JOB_STATE_APPROVAL The Approval setting for the Set Job State oper-
ation

FP_NAME This is the name of the footprint.
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
PRIVS String containing the users privileges on the ob-

ject
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
CHILDREN Table of the children

See also table 22.39 on page 362
PARENTS Table of the parents

See also table 22.40 on page 364
PARAMETER Table of the parameters and variables that are

defined for this object
REFERENCES Table of parameter references to this object
REQUIRED_JOBS Table of objects upon which the following ob-

jects are dependent
See also table 22.41 on page 365

DEPENDENT_JOBS Table of objects that are dependent upon the fol-
lowing objects
See also table 22.42 on page 367

Continued on next page

361

Continued from previous page

Field Description
REQUIRED_RESOURCES Table of resource requirements that are not in-

cluded in the environment and footprint
See also table 22.43 on page 368

DEFINED_RESOURCES Table of resources to be instantiated at the sub-
mit time, visible for submitting children

Table 22.38.: Description of the output structure of the show job definition
statement

CHILDREN The layout of the CHILDREN table is shown in the table below.

Field Description
ID The repository object Id
CHILD_ID Full path name of the child object
CHILDNAME Full path name of the child object
CHILDTYPE The child type (JOB, BATCH or MILESTONE)
CHILDPRIVS A string containing the user privileges of the

child object
PARENT_ID The name of the parent object
PARENTNAME The name of the parent object
PARENTTYPE The parent type (JOB, BATCH or MILESTONE)
PARENTPRIVS A string containing the user privileges of the

parent object
ALIAS_NAME Name for referencing to child definitions with

dynamic submits
IS_STATIC The is_static flag defines whether the job is to be

statically or dynamically submitted.
IS_DISABLED Flag indicating the the child should be executed

or skipped
INT_NAME The interval id is the ID of the interval used to

check whether the child is enabled.
Continued on next page

362

Continued from previous page

Field Description
ENABLE_CONDITION The enable condition, if completed, determines

whether a child is enabled or disabled. The con-
dition is evaluated at the time of the submit;
any parameter values must therefore already be
known at this time. The basic idea is to enable
parameter-controlled process variants with the
help of the condition.

ENABLE_MODE The enable mode determines how the results of
the enable condition and the enable interval are
linked to one another. The possibilities are AND
and OR. In the first case, a child will only be en-
abled if both the enable interval and the condi-
tion give cause for this. In the latter case, only
one of the two has to give the go-ahead. If either
condition is missing, the value for enable mode
is irrelevant.

PRIORITY The nice value that has been added to the chil-
dren

SUSPEND Determines whether the child is to be sus-
pended for the submit

RESUME_AT If the job is to be submitted as being suspended,
an automatic resume takes place at the given
time.

RESUME_IN If the job is to be submitted as being suspended,
an automatic resume takes place after the given
number of time units.

RESUME_BASE Specified time unit for RESUME_IN
MERGE_MODE Determines how the condition handles the same

object that occurs more than once in the submis-
sion hierarchy

EST_NAME An Exit State Translation that is used to translate
the Exit States of the children to the Exit States
of the parents

IGNORED_DEPENDENCIES List with the names of the dependencies for ig-
noring the dependencies of the parents

Table 22.39.: Description of the output structure of the show job definition subtable

363

PARENTS The layout of the PARENTS table is shown in the table below.

Field Description
ID The repository object Id
CHILD_ID Full path name of the child object
CHILDNAME Full path name of the child object
CHILDTYPE The child type (JOB, BATCH or MILESTONE)
CHILDPRIVS A string containing the user privileges of the

child object
PARENT_ID The name of the parent object
PARENTNAME The name of the parent object
PARENTTYPE The parent type (JOB, BATCH or MILESTONE)
PARENTPRIVS A string containing the user privileges of the

parent object
ALIAS_NAME Name for referencing to child definitions with

dynamic submits
IS_STATIC The is_static flag defines whether the job is to be

statically or dynamically submitted.
IS_DISABLED Flag indicating the the child should be executed

or skipped
INT_NAME The interval id is the ID of the interval used to

check whether the child is enabled.
ENABLE_CONDITION The enable condition, if completed, determines

whether a child is enabled or disabled. The con-
dition is evaluated at the time of the submit;
any parameter values must therefore already be
known at this time. The basic idea is to enable
parameter-controlled process variants with the
help of the condition.

ENABLE_MODE The enable mode determines how the results of
the enable condition and the enable interval are
linked to one another. The possibilities are AND
and OR. In the first case, a child will only be en-
abled if both the enable interval and the condi-
tion give cause for this. In the latter case, only
one of the two has to give the go-ahead. If either
condition is missing, the value for enable mode
is irrelevant.

PRIORITY The nice value that has been added to the chil-
dren

Continued on next page

364

Continued from previous page

Field Description
SUSPEND Determines whether the child is to be sus-

pended for the submit
RESUME_AT If the job is to be submitted as being suspended,

an automatic resume takes place at the given
time.

RESUME_IN If the job is to be submitted as being suspended,
an automatic resume takes place after the given
number of time units.

RESUME_BASE Specified time unit for RESUME_IN
MERGE_MODE Determines how the condition handles the same

object that occurs more than once in the submis-
sion hierarchy

EST_NAME An Exit State Translation that is used to translate
the Exit States of the children to the Exit States
of the parents

IGNORED_DEPENDENCIES List with the names of the dependencies for ig-
noring the dependencies of the parents

Table 22.40.: Description of the output structure of the show job definition subtable

REQUIRED_JOBS The layout of the REQUIRED_JOBS table is shown in the
table below.

Field Description
ID The repository object Id
NAME The object name
DEPENDENT_ID The full path name of the dependent object
DEPENDENTNAME The full path name of the dependent object
DEPENDENTTYPE The type of dependent object (JOB, BATCH or

MILESTONE)
DEPENDENTPRIVS String containing the user privileges of the de-

pendent object
REQUIRED_ID The full path name of the required object
REQUIREDNAME The full path name of the required object
REQUIREDTYPE The type of required object (JOB, BATCH or

MILESTONE)
Continued on next page

365

Continued from previous page

Field Description
REQUIREDPRIVS String containing the user privileges of the re-

quired object
UNRESOLVED_HANDLING Defines what to do if the required object cannot

be found
MODE The Dependency Mode states the context in

which the list of dependencies has to be viewed.
The following options are available: ALL and
ANY.

STATE_SELECTION The State Selection defines how the required
Exit States are determined. The options here are
FINAL, ALL_REACHABLE, UNREACHABLE
and DEFAULT. In the case of FINAL, the re-
quired Exit States can be explicitly listed.

CONDITION The additional conditions must be fulfilled.
STATES Comma-separated list of permitted Exit States

that the required object has to achieve to fulfil
the dependencies

RESOLVE_MODE The Resolve Mode defines the context in which
the dependency is to be resolved. The possible
values are:

Value Meaning
internal The dependency is resolved within

the master.
both If possible, the dependency is re-

solved within the master. If this
does not succeed, the search contin-
ues outside the master.

external The dependency is resolved out-
side of the master.

EXPIRED_AMOUNT When resolving an external dependency, the
time when the required job or batch was active
plays a role. The expired amount defines for
how many time units this may lie in the past.

EXPIRED_BASE The expired base defines the time unit for the
expired amount

SELECT_CONDITION The select condition defines a condition that
must be fulfilled so that a job or batch can be
regarded as being a required job.

Table 22.41.: Description of the output structure of the show job definition subtable
366

DEPENDENT_JOBS The layout of the DEPENDENT_JOBS table is shown in
the table below.

Field Description
ID The repository object Id
NAME The object name
DEPENDENT_ID The full path name of the dependent object
DEPENDENTNAME The full path name of the dependent object
DEPENDENTTYPE The type of dependent object (JOB, BATCH or

MILESTONE)
DEPENDENTPRIVS String containing the user privileges of the de-

pendent object
REQUIRED_ID The full path name of the required object
REQUIREDNAME The full path name of the required object
REQUIREDTYPE The type of required object (JOB, BATCH or

MILESTONE)
REQUIREDPRIVS String containing the user privileges of the re-

quired object
UNRESOLVED_HANDLING Defines what to do if the required object cannot

be found
MODE The Dependency Mode states the context in

which the list of dependencies has to be viewed.
The following options are available: ALL and
ANY.

STATE_SELECTION The State Selection defines how the required
Exit States are determined. The options here are
FINAL, ALL_REACHABLE, UNREACHABLE
and DEFAULT. In the case of FINAL, the re-
quired Exit States can be explicitly listed.

CONDITION The additional conditions must be fulfilled.
STATES Comma-separated list of permitted Exit States

that the required object has to achieve to fulfil
the dependencies

Continued on next page

367

Continued from previous page

Field Description
RESOLVE_MODE The Resolve Mode defines the context in which

the dependency is to be resolved. The possible
values are:

Value Meaning
internal The dependency is resolved within

the master.
both If possible, the dependency is re-

solved within the master. If this
does not succeed, the search contin-
ues outside the master.

external The dependency is resolved out-
side of the master.

EXPIRED_AMOUNT When resolving an external dependency, the
time when the required job or batch was active
plays a role. The expired amount defines for
how many time units this may lie in the past.

EXPIRED_BASE The expired base defines the time unit for the
expired amount

SELECT_CONDITION The select condition defines a condition that
must be fulfilled so that a job or batch can be
regarded as being a required job.

Table 22.42.: Description of the output structure of the show job definition subtable

REQUIRED_RESOURCES The layout of the REQUIRED_RESOURCES table
is shown in the table below.

Field Description
ID The repository object Id
RESOURCE_ID Full path name of the required Named Resource
RESOURCE_NAME Full path name of the required Named Resource
RESOURCE_USAGE The usage of the required resource (STATIC,

SYSTEM or SYNCHRONIZING)
RESOURCE_PRIVS String containing the user privileges of the

Named Resource
Continued on next page

368

Continued from previous page

Field Description
AMOUNT The required amount with System or Synchro-

nizing Resources
KEEP_MODE The Keep_Mode specifies the time at which the

resource is released (FINISH, JOB_FINAL oder
FINAL)

IS_STICKY Indicates whether the resource allocation for
subsequent jobs is retained

STICKY_NAME Optional name of the sticky resource request
STICKY_PARENT Parent Job Definition within which the sticky re-

quirement is handled
RESOURCE_STATE_MAPPING The Resource State Mapping defines how and

whether the state of the resource is to be
changed after the job has finished.

EXPIRED_AMOUNT Die number of units. If the Expired Amount is
positive, the state change must have occurred
within the specified period. If it is negative, the
state change must have occurred earlier than the
specified period.

EXPIRED_BASE The time unit for specifying the operation
IGNORE_ON_RERUN This flag indicates if the expire condition should

be ignored in case of a rerun.
LOCKMODE The lockmode for allocating Synchronizing Re-

sources (N, S, SX, X)
STATES Comma-separated list of permitted Exit States

that the required object has to achieve to fulfil
the dependencies

DEFINITION (REQUIREMENT, FOOTPRINT, FOLDER or
ENVIRONMENT)

ORIGIN Name of the Resource Request Definition, in-
valid in the case of a complete request

CONDITION The optional condition that can be defined for
requests for Static Resources

RESOURCE_STATE_PROFILE_IDId of the Resource State Profile of the Named
Resource

RESOURCE_STATE_PROFILE_NAMEName of the used Resource State Mapping

Table 22.43.: Description of the output structure of the show job definition subtable

369

show named resource

Purpose

Purpose The purpose of the show named resource statement is to get detailed information
about the named resource.

Syntax

Syntax The syntax for the show named resource statement is

show [condensed] named resource identifier {. identifier} [with
EXPAND]

EXPAND:
expand = none

| expand = < (id {, id}) | all >

Description

Description The show named resource statement gives you detailed information about the
Named Resource.

expand Since the number of job definitions in the table JOB_DEFINITIONS can
become very large, by default they are not all displayed. If the option expand = all
is used, all the job definitions as well as their parent folder and the folder hierar-
chy are outputted. Individual paths in the hierarchy can be selected by specifying
individual (folder) IDs.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME Name of the Named Resource
OWNER Owner of the Named Resource
USAGE The Usage field specifies the Resource type.
Continued on next page

370

Continued from previous page

Field Description
INHERIT_PRIVS Privileges that are inherited from the parent

folder
RESOURCE_STATE_PROFILE This is the Resource State Profile assigned to the

resource.
FACTOR This is the default factor by which Resource Re-

quirement Amounts are multiplied if nothing
else has been specified for the resource.

COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
RESOURCES These are the instances of the Named Resource.

See also table 22.45 on page 371
PARAMETERS These are the defined parameters of the Named

Resource.
See also table 22.46 on page 372

JOB_DEFINITIONS These are the job definitions that request the
Named Resource.
See also table 22.47 on page 373

Table 22.44.: Description of the output structure of the show named resource
statement

RESOURCES The layout of the RESOURCES table is shown in the table below.

Field Description
ID The repository object Id
SCOPE The names of the Scopes, Submitted Entities,

Scheduling Entities or folders that offer the re-
spective Named Resource are shown here.

TYPE This is the resource type.
OWNER The group owning the object
Continued on next page

371

Continued from previous page

Field Description
STATE Indicates the state of the resource
REQUESTABLE_AMOUNT The maximum amount of resources that can be

requested by a job
AMOUNT The amount states the current number of in-

stances of the Named Resource for this scope or
jobserver.

FREE_AMOUNT The Free Amount designates the total number
of instances of a resource in the selected scope
or jobserver that have not yet been allocated to
jobs.

IS_ONLINE Indicates whether the resource is online or not
PRIVS String containing the users privileges on the ob-

ject

Table 22.45.: Description of the output structure of the show named resource
subtable

PARAMETERS The layout of the PARAMETERS table is shown in the table
below.

Field Description
ID The repository object Id
NAME Name of the parameter
TYPE This is the parameter type. Local or Local Con-

stant
DEFAULT_VALUE With the Default Value, we differentiate be-

tween Constants and Local Constants. It is the
value of the parameter for Constants and the de-
fault value for Local Constants.

TAG The tag serves as a kind of heading for the com-
ment and is optional.

COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined

Table 22.46.: Description of the output structure of the show named resource
subtable

372

JOB_DEFINITIONS The layout of the JOB_DEFINITIONS table is shown in the
table below.

Field Description
ID The repository object Id
NAME Name of the job definition
AMOUNT The amount of the resource that is required by

the job
KEEP_MODE The value of the Keep parameter for the re-

source request from the job
IS_STICKY Indicates whether it is a Sticky Request or not
STICKY_NAME Optional name of the sticky resource request
STICKY_PARENT Parent Job Definition within which the sticky re-

quirement is handled
RESOURCE_STATE_MAPPING If a Resource State Mapping was specified in the

resource request, it is displayed here.
EXPIRED_AMOUNT The number of units. If the Expired Amount is

positive, this means that the state change cannot
have taken place longer ago than the given max-
imum time. If the amount is negative, it must
have taken place at least as long ago as the given
minimum time.

EXPIRED_BASE The unit in minutes, hours, days, weeks,
months and years

IGNORE_ON_RERUN This flag indicates if the expire condition should
be ignored in case of a rerun.

LOCKMODE The lockmode describes the mode for accessing
this resource (exclusive, shared, etc.).

STATES Multiple states that are acceptable for this job
are separated by commas.

CONDITION The condition that can be defined for requests
for Static Resources

PRIVS String containing the users privileges on the ob-
ject

Table 22.47.: Description of the output structure of the show named resource
subtable

373

show resource

Purpose

Purpose The purpose of the show resource statement is to get detailed information about
the resource.

Syntax

Syntax The syntax for the show resource statement is

show RESOURCE_URL

RESOURCE_URL:
resource identifier {. identifier} in folderpath

| resource identifier {. identifier} in serverpath

Description

Description The show resource statement gives you detailed information about the resource.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME Name of the resource
SCOPENAME Name of the scope in which the pool was cre-

ated
SCOPE_TYPE This field indicates whether it is a scope or job

server.

OWNER The group owning the object
LINK_ID Id of the referenced resource
LINK_SCOPE Scope name of the referenced resource
LINK_SCOPE_TYPE Scope name of the referenced resource
BASE_ID Id of the ultimately referenced resource
Continued on next page

374

Continued from previous page

Field Description
BASE_SCOPE Scope name of the ultimately referenced re-

source
MANAGER_ID Id of the Managing Pool
MANAGER_NAME Name of the Managing Pool
MANAGER_SCOPENAME Name of the scope in which the Managing Pool

was created
MANAGER_SCOPE_TYPE This field indicates whether it is a scope or job

server.

USAGE The Usage field specifies the Resource type.
RESOURCE_STATE_PROFILE This is the Resource State Profile assigned to the

resource.
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
TAG The tag is an optional short name for the re-

source.
STATE The state is the current state of the resource in

this scope or jobserver.
TIMESTAMP The timestamp indicates the last time the Re-

source State changed.
REQUESTABLE_AMOUNT The maximum amount of resources that can be

requested by a job
DEFINED_AMOUNT The amount that is available if the resource is

not pooled
AMOUNT The actual available amount
FREE_AMOUNT The Free_Amount designates the total number

of instances of a resource that have not yet been
allocated to jobs.

IS_ONLINE Is_Online is an indicator that states whether the
resource is online or not.

FACTOR This is the correction factor by which the re-
quested amount is multiplied.

TRACE_INTERVAL The Trace_Interval is the minimum time in sec-
onds between when Trace Records are written.

TRACE_BASE The Trace_Base is the basis for the valuation pe-
riod.

Continued on next page

375

Continued from previous page

Field Description
TRACE_BASE_MULTIPLIER The Base_Multiplier determines the multiplica-

tion factor of the Trace_Base.
TD0_AVG The average resource allocation of the last B ∗

M0 seconds
TD1_AVG The average resource allocation of the last B ∗

M1 seconds
TD2_AVG The average resource allocation of the last B ∗

M2 seconds
LW_AVG The average allocation since the last time a Trace

Record was written
LAST_WRITE The time the last Trace Record was written
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
ALLOCATIONS This is a table of resource allocations.

See also table 22.49 on page 376
PARAMETERS Additional information about a resource can be

saved in the Parameters tab
See also table 22.50 on page 377

Table 22.48.: Description of the output structure of the show resource statement

ALLOCATIONS The layout of the ALLOCATIONS table is shown in the table
below.

Field Description
ID The repository object Id
JOBID This is the Id of the job instance that was started

with either a direct submit of the job or by a sub-
mit of the Master Batch or Master Job.

MASTERID This is the Id of the job or batch instance that
was started as a Master Job and contains the cur-
rent job as a child.

JOBTYPE This is the Id of the job.
Continued on next page

376

Continued from previous page

Field Description
JOBNAME This is the name of the job.
AMOUNT This is the available amount.
KEEP_MODE The Keep parameter defines when the job re-

leases the resource. The following options are
available: KEEP, NO KEEP and KEEP FINAL.

IS_STICKY The resource is only released if there are no
other Sticky Requests for this Named Resource
in the same batch.

STICKY_NAME Optional name of the sticky resource request
STICKY_PARENT Parent job within which the sticky request is

evaluated
STICKY_PARENT_TYPE Type of the parent within which the sticky re-

quirement is evaluated
LOCKMODE The lockmode defines which access mode is

used to allocate the resource to the current job.
RSM_NAME The name of the Resource State Mapping
TYPE The type of allocation: Available, Blocked, Allo-

cations, Master_Reservation, Reservation
TYPESORT Aid for sorting the allocations
P The priority of the job
EP The effective priority of the job
PRIVS String containing the users privileges on the ob-

ject

Table 22.49.: Description of the output structure of the show resource subtable

PARAMETERS The layout of the PARAMETERS table is shown in the table
below.

Field Description
ID The repository object Id
NAME Name of the parameter
EXPORT_NAME The export name defines the name under which

the value of the parameter is exported to the
process’s environment.

TYPE This is the parameter type
Continued on next page

377

Continued from previous page

Field Description
IS_LOCAL True for local parameters that are only visible

for the job itself
EXPRESSION Expression for the parameter type expression
DEFAULT_VALUE The default value of the parameter
REFERENCE_TYPE Type of object that is being referenced
REFERENCE_PATH The path to the object that is being referenced
REFERENCE_PRIVS The user’s privileges for the object that is being

referenced
REFERENCE_PARAMETER Name of the parameter that is being referenced
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
ID The repository object Id
NAME Name of the parameter
EXPORT_NAME The export name defines the name under which

the value of the parameter is exported to the
process’s environment.

TYPE This is the parameter type
IS_LOCAL True for local parameters that are only visible

for the job itself
EXPRESSION Expression for the parameter type expression
DEFAULT_VALUE The default value of the parameter
REFERENCE_TYPE Type of object that is being referenced
REFERENCE_PATH The path to the object that is being referenced
REFERENCE_PRIVS The user’s privileges for the object that is being

referenced
REFERENCE_PARAMETER Name of the parameter that is being referenced
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
DEFINITION This column indicates where a visible parame-

ter is defined.

DEFINITION_TYPE The type of the defining object

ID The repository object Id
NAME Name of the parameter
TYPE This is the parameter type
Continued on next page

378

Continued from previous page

Field Description
IS_LOCAL True for local parameters that are only visible

for the job itself
REFERENCE_TYPE Type of object that is referencing the parameter
REFERENCE_PATH The path to the object that is referencing the pa-

rameter
REFERENCE_ID The ID of the referenced job

REFERENCE_PRIVS The user’s privileges for the object that is refer-
encing the parameter

REFERENCE_PARAMETER Name of the parameter that is being referenced
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined

Table 22.50.: Description of the output structure of the show resource subtable

379

show resource state definition

Purpose

Purpose The purpose of the show resource state definition is to get detailed information
about the specified resource state definition.

Syntax

Syntax The syntax for the show resource state definition statement is

show resource state definition statename

Description

Description The show resource state definition statement gives you detailed information about
the Resource State Definition.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject

Table 22.51.: Description of the output structure of the show resource state defini-
tion statement

380

show resource state mapping

Purpose

PurposeThe purpose of the show resource state mapping statement is to get detailed infor-
mation about the specified mapping.

Syntax

SyntaxThe syntax for the show resource state mapping statement is

show resource state mapping profilename

Description

DescriptionThe show resource state mapping statement gives you detailed information about
the specified mapping.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME Name of the Resource State Mapping
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
MAPPINGS A table with translations from the Exit State to

the Resource State
See also table 22.53 on page 382

Table 22.52.: Description of the output structure of the show resource state mapping
statement

381

MAPPINGS The layout of the MAPPINGS table is shown in the table below.

Field Description
ESD_NAME Name of the Exit State Definition
RSD_FROM The original state of the resource
RSD_TO The current state of the resource

Table 22.53.: Description of the output structure of the show resource state mapping
subtable

382

show resource state profile

Purpose

PurposeThe purpose of the show resource state profile is to get detailed information about
the specified resorce state profile.

Syntax

SyntaxThe syntax for the show resource state profile statement is

show resource state profile profilename

Description

DescriptionThe show resource state profile statement gives you detailed information about the
specified Resource State Profile.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
INITIAL_STATE This field defines the initial state of the resource.

This Resource State does not have to be present
in the list of valid Resource States.

COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
Continued on next page

383

Continued from previous page

Field Description
STATES The valid Resource States are shown in the Re-

source State column in the States table.
See also table 22.55 on page 384

Table 22.54.: Description of the output structure of the show resource state profile
statement

STATES The layout of the STATES table is shown in the table below.

Field Description
ID The repository object Id
RSD_NAME Name of the Resource State Definition
PRIVS String containing the users privileges on the ob-

ject

Table 22.55.: Description of the output structure of the show resource state profile
subtable

384

show schedule

Purpose

PurposeThe purpose of the show schedule statement is to get detailed information about
the specified schedule.

Syntax

SyntaxThe syntax for the show schedule statement is

show schedule schedulepath

Description

DescriptionThe show schedule statement gives you detailed information about the specified
schedule.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
INHERIT_PRIVS Privileges that are inherited from the parent

folder
INTERVAL The name of the interval belonging to the sched-

ule
TIME_ZONE The time zone in which the schedule is to be cal-

culated
ACTIVE This field defines whether the schedule is

marked as being active.
EFF_ACTIVE This field defines whether the schedule is actu-

ally active. This can deviate from ”active” due
to the hierarchical organisation.

CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
Continued on next page

385

Continued from previous page

Field Description
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined

Table 22.56.: Description of the output structure of the show schedule statement

386

show scheduled event

Purpose

PurposeThe purpose of the show scheduled event is to get detailed information about the
specified event.

Syntax

SyntaxThe syntax for the show scheduled event statement is

show scheduled event schedulepath . eventname

Description

DescriptionThe show scheduled event statement gives you detailed information about the spe-
cified event.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
OWNER The group owning the object
SCHEDULE The Schedule that determines when the Sched-

uled Event is to take place
EVENT The event that is triggered
ACTIVE This flag indicates whether the Scheduled Event

is labelled as being active.
EFF_ACTIVE This flag indicates whether the Scheduled Event

is actually active.
BROKEN The Broken field can be used to check whether

an error occurred when the job was submitted.
ERROR_CODE If an error occurred while the job was being exe-

cuted in the Time Scheduling, the returned error
code is displayed in the Error_Code field. If no
error occurred, this field remains empty.

Continued on next page

387

Continued from previous page

Field Description
ERROR_MSG If an error occurred while the job was being exe-

cuted in the Time Scheduling, the returned error
message is displayed in the Error Message field.
If no error occurred, this field remains empty.

LAST_START The last time the job is to be executed by the
Scheduling System is shown here

NEXT_START The next scheduled time when the task is to be
executed by the Scheduling System is shown
here.

NEXT_CALC The next time when a recalculation is to take
place

CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
BACKLOG_HANDLING The Backlog_Handling describes how events

that should have been triggered following a
downtime are to be handled.

SUSPEND_LIMIT The Suspend_Limit defines the delay after
which a job is submitted in a suspended state.

EFFECTIVE_SUSPEND_LIMIT The Suspend Limit defines the delay after which
a job is submitted in a suspended state.

CALENDAR This flag indicates whether calendar entries are
created.

CALENDAR_HORIZON The defined length of the period in days for
which a calendar is created

EFFECTIVE_CALENDAR_
HORIZON

The effective length of the period in days for
which a calendar is created

COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CALENDAR_TABLE The table with the next start times

Table 22.57.: Description of the output structure of the show scheduled event
statement

388

show scope

Purpose

PurposeThe purpose of the show scope statement is to get detailed information about a
scope.

Syntax

SyntaxThe syntax for the show scope statement is

show < scope serverpath | jobserver serverpath > [with EXPAND]

EXPAND:
expand = none

| expand = < (id {, id}) | all >

Description

DescriptionThe show scope statement gives you detailed information about the scope.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OWNER The group owning the object
TYPE The type of scope
INHERIT_PRIVS Privileges that are inherited from the parent

folder
IS_TERMINATE This flag indicates whether a termination order

exists.
IS_SUSPENDED Indicates whether the scope is suspended
IS_ENABLED The jobserver can only log on to the server if the

Enable flag is set to YES.
Continued on next page

389

Continued from previous page

Field Description
IS_REGISTERED Defines whether the jobserver has sent a register

command
IS_CONNECTED Indicates whether the jobserver is connected
HAS_ALTERED_CONFIG The configuration on the server does not match

the current configuration on the server.
STATE This is the current state of the resource in this

scope.
PID The PID is the process identification number of

the jobserver process on the respective host sys-
tem.

NODE The Node specifies the computer on which the
jobserver is running. This field has a purely doc-
umentary character.

IDLE The time that has elapsed since the last com-
mand. This only applies for jobservers.

ERRMSG This is the most recently outputted error mes-
sage.

COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
RESOURCES The resources present in this scope are dis-

played here.
See also table 22.59 on page 391

CONFIG The configuration of the jobserver is described
in the Config tab.
See also table 22.60 on page 392

CONFIG_ENVMAPPING Whether and under which name the environ-
ment variables are visible is configured in this
tab.
See also table 22.61 on page 393

Continued on next page

390

Continued from previous page

Field Description
PARAMETERS Additional information about a resource can be

saved in the Parameters tab
See also table 22.62 on page 393

Table 22.58.: Description of the output structure of the show scope statement

RESOURCES The layout of the RESOURCES table is shown in the table below.

Field Description
ID The repository object Id
NR_ID Id of the Named Resource
NAME Name of the Named Resource
USAGE It is the usage of the Named Resource (STATIC,

SYSTEM or SYNCHRONISING)
NR_PRIVS String containing the abreviations for the user

privileges for this Named Resource
TAG The tag is an optional short name for the re-

source.
OWNER The group owning the object
LINK_ID Id of the referenced resource
LINK_SCOPE Scope name of the referenced resource
LINK_SCOPE_TYPE This field indicates whether it is a scope or job

server.

STATE The Resource State of the resource
REQUESTABLE_AMOUNT The maximum amount of resources that can be

requested by a job
AMOUNT The actual amount that is available
FREE_AMOUNT The Free_Amount that can be allocated
TOTAL_FREE_AMOUNT Free_Amount available for allocations includ-

ing the free amount of pooled resources if it is
a pool

IS_ONLINE This is the availability status of the resource.
FACTOR This is the correction factor by which the re-

quested amount is multiplied.
TIMESTAMP The timestamp indicates the last time the Re-

source State changed.
Continued on next page

391

Continued from previous page

Field Description
SCOPE The scope in which the resource was created
MANAGER_ID Id of the Managing Pool
MANAGER_NAME Name of the Managing Pool
MANAGER_SCOPENAME Name of the scope in which the Managing Pool

was created
MANAGER_SCOPE_TYPE This field indicates whether it is a scope or job

server.

HAS_CHILDREN Flag indicating whether a Pool Child has man-
aged resources/pools. If it is not a pool, this is
always FALSE.

POOL_CHILD This flag indicates whether the displayed re-
source is a child of the pool.

TRACE_INTERVAL The Trace_Interval is the minimum time in sec-
onds between when Trace Records are written.

TRACE_BASE The Trace_Base is the basis for the valuation pe-
riod (B).

TRACE_BASE_MULTIPLIER The Base_Multiplier determines the multiplica-
tion factor (M) of the Trace_Base.

TD0_AVG The average resource allocation of the last B ∗
M0 seconds

TD1_AVG The average resource allocation of the last B ∗
M1 seconds

TD2_AVG The average resource allocation of the last B ∗
M2 seconds

LW_AVG The average allocation since the last time a Trace
Record was written

LAST_WRITE The time the last Trace Record was written
PRIVS String containing the users privileges on the ob-

ject

Table 22.59.: Description of the output structure of the show scope subtable

CONFIG The layout of the CONFIG table is shown in the table below.

Field Description
KEY The name of the configuration variable
Continued on next page

392

Continued from previous page

Field Description
VALUE The value of the configuration variable
LOCAL Indicates whether the Key Value Pair is defined

at local or parent level
ANCESTOR_SCOPE This is the scope in which the Key Value Pair is

defined.
ANCESTOR_VALUE This is the value that is defined at parent level.

Table 22.60.: Description of the output structure of the show scope subtable

CONFIG_ENVMAPPING The layout of the CONFIG_ENVMAPPING table is
shown in the table below.

Field Description
KEY Name of the environment variable
VALUE Name of the environment variable that is to be

set
LOCAL Indicates whether the Key Value Pair is defined

at local or parent level
ANCESTOR_SCOPE This is the scope in which the Key Value Pair is

defined.
ANCESTOR_VALUE This is the value that is defined at parent level.

Table 22.61.: Description of the output structure of the show scope subtable

PARAMETERS The layout of the PARAMETERS table is shown in the table
below.

Field Description
ID The repository object Id
NAME Name of the parameter
EXPORT_NAME The export name defines the name under which

the value of the parameter is exported to the
process’s environment.

TYPE This is the parameter type
IS_LOCAL True for local parameters that are only visible

for the job itself
Continued on next page

393

Continued from previous page

Field Description
EXPRESSION Expression for the parameter type expression
DEFAULT_VALUE The default value of the parameter
REFERENCE_TYPE Type of object that is being referenced
REFERENCE_PATH The path to the object that is being referenced
REFERENCE_PRIVS The user’s privileges for the object that is being

referenced
REFERENCE_PARAMETER Name of the parameter that is being referenced
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
ID The repository object Id
NAME Name of the parameter
EXPORT_NAME The export name defines the name under which

the value of the parameter is exported to the
process’s environment.

TYPE This is the parameter type
IS_LOCAL True for local parameters that are only visible

for the job itself
EXPRESSION Expression for the parameter type expression
DEFAULT_VALUE The default value of the parameter
REFERENCE_TYPE Type of object that is being referenced
REFERENCE_PATH The path to the object that is being referenced
REFERENCE_PRIVS The user’s privileges for the object that is being

referenced
REFERENCE_PARAMETER Name of the parameter that is being referenced
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
DEFINITION This column indicates where a visible parame-

ter is defined.

DEFINITION_TYPE The type of the defining object

ID The repository object Id
NAME Name of the parameter
TYPE This is the parameter type
IS_LOCAL True for local parameters that are only visible

for the job itself
REFERENCE_TYPE Type of object that is referencing the parameter
Continued on next page

394

Continued from previous page

Field Description
REFERENCE_PATH The path to the object that is referencing the pa-

rameter
REFERENCE_ID The ID of the referenced job

REFERENCE_PRIVS The user’s privileges for the object that is refer-
encing the parameter

REFERENCE_PARAMETER Name of the parameter that is being referenced
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined

Table 22.62.: Description of the output structure of the show scope subtable

395

show session

Purpose

Purpose The purpose of the show session statement is to get more detailed information
about the specified or the current session.

Syntax

Syntax The syntax for the show session statement is

show session [sid]

Description

Description The show session statement gives you detailed information
about the specified or current session.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
THIS The current session is indicated in this field by

an asterisk (*).
SESSIONID The internal server Id for the session
START Time when the connection was set up
USER Name of the user name used for the session lo-

gin
UID Id of the user, jobserver or job
IP IP address of the connecting sessions
IS_SSL Indicates if the connection is an SSL/TLS con-

nection
IS_AUTHENTICATED Indicates if the client has been authenticated
TXID Number of the last transaction that was exe-

cuted by the session
IDLE The number of seconds since the last statement

from a session
Continued on next page

396

Continued from previous page

Field Description
TIMEOUT The idle time after which the session is automat-

ically disconnected
STATEMENT The statement that is currently being executed

Table 22.63.: Description of the output structure of the show session statement

397

show system

Purpose

Purpose The purpose of the show system statement is to get information about the actual
configuration of the running server.

Syntax

Syntax The syntax for the show system statement is

show system

show system with lock

Description

Description The show system statement gives you detailed information about the current con-
figuration of the running server.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
VERSION The current version of the software
MAX_LEVEL The maximum compatibility level of the soft-

ware
BUILD_DATE Date and time of the build

BUILD_HASH The build hash is a unique hash value that indi-
cates an exact development status. This value is
often required when handling support requests.

NUM_CPU The number of processors present in the system
MEM_USED The amount of used memory
MEM_FREE The amount of free memory
MEM_MAX The maximum amount of memory that the

server can use
Continued on next page

398

Continued from previous page

Field Description
STARTTIME The time when the server was started
UPTIME The time when the server started running
HITRATE The hit rate in the environment cache of the

Scheduling Thread
LOCK_HWM The Lock_HWM shows the high water mark of

active locks in the system. This field is only rel-
evant if multiple writer threads are active.

LOCKS_REQUESTED The Locks_Requested field shows the total
number of locks requested since server startup.
This field is only relevant in case of multiple
writer threads.

LOCKS_USED This field shows the number of locks currently
in use. It is only relevant in case of multiple
writer threads.

LOCKS_DISCARDED The field Locks_Discarded shows the number of
locks removed from the system.

CNT_RW_TX The number of R/W Transactions since server
startup

CNT_DL The number of deadlocks since server startup
CNT_WL The number of single threaded write worker

transactions since server startup
WORKER A table with a list of the Worker Threads

See also table 22.65 on page 399
LOCKING STATUS The locking state provides information about

the state of the internal locking. This field is
only displayed if the with locks option is speci-
fied.

Table 22.64.: Description of the output structure of the show system statement

WORKER The layout of the WORKER table is shown in the table below.

Field Description
ID The repository object Id
TYPE The type of worker thread, Read/Write (RW) or

Read Only (RO)
NAME The object name
Continued on next page

399

Continued from previous page

Field Description
STATE The state of the worker
TIME The time from which the worker is in a state

Table 22.65.: Description of the output structure of the show system subtable

400

show trigger

Purpose

PurposeThe purpose of the show trigger statement is to get detailed information about the
specified trigger.

Syntax

SyntaxThe syntax for the show trigger statement is

show trigger triggername on TRIGGEROBJECT [< noinverse | inverse >
]

TRIGGEROBJECT:
resource identifier {. identifier} in folderpath

| job definition folderpath
| named resource identifier {. identifier}
| object monitor objecttypename
| resource identifier {. identifier} in serverpath

Description

DescriptionThe show trigger statement gives you detailed information about the specified
trigger.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
OBJECTTYPE The type of object in which the trigger is defined
OBJECTNAME Full path name of the object in which the trigger

is defined
ACTIVE The flag indicates whether the trigger is cur-

rently active.
ACTION Type of triggered action: SUBMIT or RERUN
Continued on next page

401

Continued from previous page

Field Description
SUBMIT_TYPE The object type that is submitted when the trig-

ger is activated
SUBMIT_NAME Name of the job definition that is submitted
SUBMIT_SE_OWNER The owner of the object that is submitted
SUBMIT_PRIVS The privileges for the object that is to be submit-

ted
MAIN_TYPE Type of main job (job/batch)
MAIN_NAME Name of the main job
MAIN_SE_OWNER Owner of the main job
MAIN_PRIVS Privileges for the main job
PARENT_TYPE Type of parent job (job/batch)
PARENT_NAME Name of the parent job
PARENT_SE_OWNER Owner of the parent job
PARENT_PRIVS Privileges for the parent job
TRIGGER_TYPE The trigger type that describes when it is acti-

vated
MASTER Indicates whether the trigger submitted a mas-

ter or a child
IS_INVERSE In case of an inverse trigger, the trigger is re-

garded to belong to the triggered job. The trig-
ger can be regarded as some kind of callback
function. This flag has no effects on the trigger’s
behaviour.

SUBMIT_OWNER The owner group that is used with the Submit-
ted Entity

IS_CREATE Indicates whether the trigger reacts to create
events

IS_CHANGE Indicates whether the trigger reacts to change
events

IS_DELETE Indicates whether the trigger reacts to delete
events

IS_GROUP Indicates whether the trigger handles the events
as a group

MAX_RETRY The maximum number of trigger activations in
a single Submitted Entity

SUSPEND Specifies whether the submitted object is sus-
pended

Continued on next page

402

Continued from previous page

Field Description
RESUME_AT Time of the automatic resume
RESUME_IN Number of time units until the automatic re-

sume
RESUME_BASE Specified time unit for RESUME_IN
WARN Specifies whether a warning has to be given

when the activation limit is reached
LIMIT_STATE This field specifies which state the triggering job

aqcuires if the fire limit is reached. If the trig-
gering job has a final state already, this specifi-
cation is ignored. If the value is NONE, no state
change takes place.

CONDITION Conditional expression to define the trigger
condition

CHECK_AMOUNT The amount of CHECK_BASE units for
checking the condition in the case of non-
synchronised triggers

CHECK_BASE Units for the CHECK_AMOUNT
COMMENT Comment if defined
COMMENTTYPE Type of comment if a comment is defined
CREATOR Name of the user created the object
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
STATES A list of states that cause the trigger to be acti-

vated
See also table 22.67 on page 403

PARAMETERS A list of states that cause the trigger to be acti-
vated
See also table 22.68 on page 404

Table 22.66.: Description of the output structure of the show trigger statement

STATES The layout of the STATES table is shown in the table below.

Field Description
ID The repository object Id
Continued on next page

403

Continued from previous page

Field Description
FROM_STATE The trigger is activated if this is the old Resource

State
TO_STATE The trigger is activated if this is the new Re-

source State or the Exit State of the object.

Table 22.67.: Description of the output structure of the show trigger subtable

PARAMETERS The layout of the PARAMETERS table is shown in the table
below.

Field Description
ID The repository object Id
NAME Name of the parameter that is set at the submit

time.
EXPRESSION An expression that is valuated in the context of

the triggering object. The syntax is the same as
the syntax in the trigger condition, except that
here general expressions are allowed, and not
just Boolean expressions.

Table 22.68.: Description of the output structure of the show trigger subtable

404

show user

Purpose

PurposeThe purpose of the show user statement is to show detailed information about the
user.

Syntax

SyntaxThe syntax for the show user statement is

show user [username]

Description

DescriptionThe show user statement gives you detailed information about the user.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID The repository object Id
NAME The object name
IS_ENABLED Flag that shows whether the user is allowed to

log on
DEFAULT_GROUP The default group of the users who are being

used by the owners of the object
CONNECTION_TYPE Indicates which security level of a connection is

required.

1. plain – Every kind of connection is per-
mitted

2. ssl – Only SSL-connections are permitted

3. ssl_auth – Only SSL-connections with
client authentication are permitted

CREATOR Name of the user created the object
Continued on next page

405

Continued from previous page

Field Description
CREATE_TIME Date and time of object creation
CHANGER Name of the last user changed the object
CHANGE_TIME Date and time of object change
PRIVS String containing the users privileges on the ob-

ject
MANAGE_PRIVS Table of the manage privileges

See also table 22.70 on page 406
GROUPS Table of groups to which the user belongs

See also table 22.71 on page 406
EQUIVALENT_USERS Table of users and jobservers that count as

equivalent
See also table 22.72 on page 407

PARAMETERS It is possible to save key value pairs for a
user. Although these values are not used by the
server itself, they allow user-related settings to
be centrally stored by a frontend application.

COMMENTTYPE Type of comment if a comment is defined
COMMENT Comment if defined

See also table 22.73 on page 407

Table 22.69.: Description of the output structure of the show user statement

MANAGE_PRIVS The layout of the MANAGE_PRIVS table is shown in the
table below.

Field Description
PRIVS String containing the users privileges on the ob-

ject

Table 22.70.: Description of the output structure of the show user subtable

GROUPS The layout of the GROUPS table is shown in the table below.

Field Description
ID The repository object Id
Continued on next page

406

Continued from previous page

Field Description
NAME The object name
PRIVS String containing the users privileges on the ob-

ject

Table 22.71.: Description of the output structure of the show user subtable

EQUIVALENT_USERS The layout of the EQUIVALENT_USERS table is shown
in the table below.

Field Description
TYPE The type of user (server or user)
EQUIVALENT_USER Name of the equivalent user

Table 22.72.: Description of the output structure of the show user subtable

COMMENT The layout of the COMMENT table is shown in the table below.

Field Description
TAG The tag serves as a kind of heading for the com-

ment and is optional.

COMMENT Comment if defined

Table 22.73.: Description of the output structure of the show user subtable

407

23. shutdown commands

409

shutdown

Purpose

Purpose The purpose of the shutdown statement is to instruct the addressed jobservers to
terminate.

Syntax

Syntax The syntax for the shutdown statement is

shutdown serverpath

Description

Description The shutdown statement is used to shut down the addressed jobserver.

Output

Output This statement returns a confirmation of a successful operation.

410

24. stop commands

411

stop server

Purpose

Purpose The purpose of the stop server statement is to instruct the server to terminate.

Syntax

Syntax The syntax for the stop server statement is

stop server

stop server kill

Description

Description The stop server statement is used to shut down the server. If this should not
function correctly for any reason, the server can also be forced to shut down using
kill.

Output

Output This statement returns a confirmation of a successful operation.

412

25. submit commands

413

submit

Purpose

Purpose The purpose of the submit statement is to execute a master batch or job as well as
all defined children.

Syntax

Syntax The syntax for the submit statement is

submit < folderpath | id > [with WITHITEM {, WITHITEM}]

submit aliasname [with WITHITEM {, WITHITEM}]

WITHITEM:
check only

| childtag = string
| < enable | disable >
| master
| nicevalue = signed_integer
| parameter = none
| parameter = (PARAM {, PARAM})
| < noresume | resume in period | resume at datetime >
| submittag = string
| < nosuspend | suspend >

| time zone = string
| unresolved = JRQ_UNRESOLVED

| group = groupname

PARAM:
parametername = < string | number >

JRQ_UNRESOLVED:
defer

| defer ignore
| error
| ignore
| suspend

414

Description

DescriptionThe submit statement is used to submit a job or batch. There are two kinds of
submit command:

• The first kind is used by users, who can also be programs, and the Time
Scheduling Module. This form submits Master Jobs and Batches.

• The second form of the statement is used by jobs to submit dynamic children.

check only The check only option is used to verify whether a Master Submit-
table Batch or Job can be submitted. This means that a check is run to ascertain
whether all the dependencies can be fulfilled and all the referenced parameters are
defined.
Whether the jobs can be executed in any scope or not is not verified. This is a
situation that can arise at any point during the runtime.
Positive feedback means that, from the system’s perspective, the job or batch can
be submitted.

childtag The childtag option is used by jobs to submit several instances of the
same Scheduling Entity and to be able to differentiate between them.
An error is triggered if the same Scheduling Entity is submitted twice using the
same childtag. The content of the childtag has no further significance for the Schedul-
ing System.
The maximum length for a childtag is 70 characters. The childtag option is ignored
in the case of a Master Submit.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

nicevalue The nicevalue option defines a correction that is used for the calcu-
lation of the priorities for the job and its children. Values between -100 and 100 are
permitted.

parameter The parameter option is used to specify the value of Job Parameters
for the submit. The parameters are set in the scope of the Master Batch or Job. This
means that if parameters are specified that are not defined in the Master Batch or
Job, these parameters are invisible to any children.

415

submittag If the submittag is specified, it must have a unique name for the
Submitted Entity. This tag was introduced to be able to programmatically submit
jobs and batches and to resubmit the job or batch with the same tag following a
crash of one of the components. If the job submit was successful the first time, the
second submit will report an error. If not, the second submit will succeed.

unresolved The unresolved option defines how the server is to react to unre-
solved dependencies. This option is mainly used if parts of a batch are submitted
following repair work. The faulty part is normally cancelled and then resubmit-
ted as a Master Run. In this case the previous dependencies have to be ignored
otherwise the submit will fail.

suspend The suspend option is used to submit jobs or batches and to suspend
them at the same time. If nothing is defined, they are not suspended. This can be
explicitly specified at the submit time.
If a job or batch was suspended, neither it nor its children are started. If a job is
already running, it will not reach a Final State if it is suspended.

resume The resume option can be used together with the suspend option to
cause a delayed execution. There are two ways to do this. A delay can be achieved
by specifying either the number of time units for the delay the time when the job
or batch is to be activated.
This option can be used to reproduce the at functionality without creating a sched-
ule.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID Id of the Submitted Entity

Table 25.1.: Description of the output structure of the submit statement

416

26. suspend commands

417

suspend

Purpose

Purpose The purpose of the suspend statement is to prevent further jobs to be executed by
this jobserver. See also the resume statement on page 304.

Syntax

Syntax The syntax for the suspend statement is

suspend serverpath

Description

Description The suspend statement prevents further jobs from being executed by this job-
server.

Output

Output This statement returns a confirmation of a successful operation.

418

Part III.

Jobserver Commands

419

27. Jobserver Commands

421

alter job

Purpose

Purpose The purpose of the alter job statement is to change properties of the specified job.
This statement is is used by job administrators, jobservers, and by the job itself.

Syntax

Syntax The syntax for the alter job statement is

alter job jobid
with WITHITEM {, WITHITEM}

alter job
with WITHITEM {, WITHITEM}

WITHITEM:
< disable | enable >

| < suspend | suspend restrict | suspend local | suspend local restrict >
| cancel
| clear warning
| clone [< resume | suspend >]
| comment = string
| error text = string
| exec pid = pid
| exit code = signed_integer
| exit state = statename [force]
| ext pid = pid
| ignore resource = (id {, id})
| ignore dependency = (jobid [recursive] {, jobid [recursive]})
| kill [recursive]
| nicevalue = signed_integer
| priority = integer
| renice = signed_integer
| rerun [recursive]
| resume
| < noresume | resume in period | resume at datetime >
| run = integer
| state = JOBSTATE

| timestamp = string
| warning = string

422

JOBSTATE:
broken active

| broken finished
| dependency wait
| error
| finished
| resource wait
| running
| started
| starting
| synchronize wait

Description

DescriptionThe alter job command is used for several purposes. Firstly, jobservers use this
command to document the progress of a job. All the state transitions a job under-
goes during the time when the job is the responsibility of a jobserver are performed
using the alter job command.
Secondly, some changes such as ignoring dependencies or resources, as well as
changing the priority of a job, are carried out manually by an administrator.
The Exit State of a job in a Pending State can be set by the job itself or by a process
that knows the job ID and key of the job that is to be changed.

cancel The cancel option is used to cancel the addressed job and all non-Final
Children. A job can only be cancelled if neither the job itself nor one of its children
is active. Cancelling a running job will set the job in a cancelling state. The effective
cancel is postponed until the job is finished.
If a Scheduling Entity is dependent upon the cancelled job, it can become unreach-
able. In this case the dependent job does not acquire the Unreachable Exit State
defined in the Exit State Profiles, but is set as having the Job State ”Unreachable”.
It is the operator’s task to restore this job back to the job state ”Dependency Wait”
by ignoring dependencies or even to cancel it.
Cancelled jobs are considered to be just like Final Jobs without a Final Exit. This
means that the parents of a cancelled job become final without taking into consid-
eration the Exit State of the cancelled job. In this case the dependent jobs of the
parents continue running normally.
The cancel option can only be used by users.

comment The comment option is used to document an action or to add a com-
ment to the job. Comments can have a maximum length of 1024 characters. Any
number of comments can be saved for a job.
Some comments are saved automatically. For example, if a job attains a Restartable
State, a log is written to document this fact.

423

error text The error text option is used to write error information about a job.
This can be done by the responsible jobserver or a user. The server can write this
text itself as well.
This option is normally used if the jobserver cannot start the corresponding pro-
cess. Possible cases are where it is not possible to switch to the defined working
directory, if the executable program cannot be found, or when opening the error
log file triggers an error.

exec pid The exec pid option is used exclusively by the jobserver to set the
process ID of the control process within the server.

exit code The exit code option is used by the jobserver to tell the repository
server with which Exit Code the process has finished. The repository server now
calculates the matching Exit State from the Exit State Mapping that was used.

exit state The exit state option is used by jobs in a pending state to set their
state to another value. This is usually a Restartable or Final State.
Alternatively, this option can be used by administrators to set the state of a non-
final job.
If the Force Flag is not being used, the only states that can be set are those which
are theoretically attainable by applying the Exit State Mapping to any Exit Code.
The set state must exist in the Exit State Profile.

ext pid The ext pid option is used exclusively by the jobserver to set the process
ID of the started user process.

ignore resource The ignore resource option is used to revoke individual Re-
source Requests. The ignored resource is then no longer requested.
If the parameters of a resource are being referenced, that resource cannot be ig-
nored.
If invalid IDs have been specified, it is skipped. All other specified resources are
ignored. Invalid IDs in this context are the IDs of resources that are not requested
by the job.
The ignoring of resources is logged.

ignore dependency The ignore dependency option is used to ignore defined
dependencies. If the recursive flag is used, not only do the job or batch ignore the
dependencies, but its children do so as well.

424

kill The kill option is used to submit the defined Kill Job. If no Kill Job has been
defined, it is not possible to forcibly terminate the job from within BICsuite. The job
obviously has to be active, that means it must be running, killed or broken_active.
The last two states are not regular cases. When a Kill Job has been submitted, the
Job State is to_kill. After the Kill Job has terminated, the Job State of the killed job
is set to killed unless it has been completed, in which case it is finished or final.
This means that the job with the Job State killed is always still running and that at
least one attempt has been made to terminate it.

nicevalue The nicevalue option is used to change the priority or the nicevalue
of a job or batch and all of its children. If a child has several parents, any changes
you make can, but do not necessarily have to, affect the priority of the child in the
nicevalue of one of the parents. Where there are several parents, the maximum
nicevalue is searched for.
This means that if Job C has three Parents P1, P2 and P3, whereby P1 sets a nice
value of 0, P2 sets a nicevalue of 10 and P3 a nicevalue of -10, the effective nicevalue
is -10. (The lower the nicevalue the better). If the nicevalue for P2 is changed to -5,
nothing happens because the -10 of P3 is better than -5. If the nicevalue of P3 falls
to 0, the new effective nicevalue for Job C is -5.
The nicevalues can have values between -100 and 100. Values that exceed this range
are tacitly adjusted.

priority The priority option is used to change the (static) priority of a job. Be-
cause batches and milestones are not executed, priorities are irrelevant to them.
Changing the priority only affects the changed job. Valid values lie between 0 and
100. In this case, 100 corresponds to the lowest priority and 0 is the highest priority.
When calculating the dynamic priority of a job, the scheduler begins with the static
priority and adjusts it according to how long the job has already been waiting. If
more than one job has the same dynamic priority, the job with the lowest job ID is
scheduled first.

renice The renice option is similar to the nicevalue option with the difference
that the renice option functions relatively while the nicevalue option functions ab-
solutely. If some batches have a nicevalue of 10, a renice of -5 causes the nicevalue
to rise to 5. (It rises because the lower the number, the higher the priority).

rerun The rerun option is used to restart a job in a Restartable State. If you
attempt to restart a job that is not restartable, an error message is displayed. A
job is restartable if it is in a Restartable State or it has the Job State error or bro-
ken_finished.
If the recursive flag has been specified, the job itself and all its direct and indirect
children that are in a Restartable State are restarted. If the job itself is final, this is

425

not considered to be an error. It is therefore possible to recursively restart batches.

resume The resume option is used to reactivate a suspended job or batch.
There are two ways to do this. The suspended job or batch can either be reacti-
vated immediately or a delay can be set.
A delay can be achieved by specifying either the number of time units for the delay
the time when the job or batch is to be activated.
For details about specifying a time, refer to the overview on page 20. The resume
option can be used together with the suspend option. Here, the job is suspended
and then resumed again after (or at) a specified time.

run The run option is used by the jobserver to ensure that the modified job
matches the current version.
Theoretically, the computer could crash after a job has been started by a jobserver.
To complete the work, the job is manually restarted from another jobserver. After
the first system has been booted, the jobserver can attempt to change the job state to
broken_finished without knowing anything about what happened after the crash.
Using the run option then prevents the wrong state from being set.

state The state option is mainly used by jobservers, but it can also be used by
administrators. It is not recommended to do so unless you know exactly what you
are doing.
The usual procedure is that the jobserver sets the state of a job from starting to
started, from started to running, and from running to finished. In the event of a
crash or any other problems, it is possible for the jobserver to set the job state to
broken_active or broken_finished. This means that the Exit Code of the process is
not available and the Exit State has to be set manually.

suspend The suspend option is used to suspend a batch or job. It always func-
tions recursively. If a parent is suspended, its children are all suspended as well.
The resume option is used to reverse the situation.
The effect of the restrict option is that cwa resume can be done by members of the
group ADMIN only.

timestamp The timestamp option is used by the jobserver to set the times-
tamps of the state transition in keeping with the local time from the perspective
of jobserver.

Output

Output This statement returns a confirmation of a successful operation.

426

alter jobserver

Purpose

PurposeThe purpose of the alter jobserver statement is to alter properties of a jobserver.

Syntax

SyntaxThe syntax for the alter jobserver statement is

alter [existing] jobserver
with < fatal | nonfatal > error text = string

alter [existing] jobserver
with dynamic PARAMETERS

PARAMETERS:
parameter = none

| parameter = (PARAMETERSPEC {, PARAMETERSPEC})

PARAMETERSPEC:
parametername = < string | number >

Description

DescriptionThe alter jobserver command is both a user command and a jobserver command.
It is used as a user command to change the configuration or other properties of a
scope or jobserver. Further details are described in the create scope command on
page 164.
The syntax of the user command corresponds to the first form of the alter scope
command. As a jobserver command, it is used to notify the server about any errors.
If the Fatal Flag is used, this means that the jobserver is shutting down. In the other
case, the jobserver continues running.
The third form of the alter jobserver command is also used by the jobserver. The
jobserver publishes the values of its dynamic parameter. The server uses published
values to resolve parameters in the command line and log file information when
retrieving a job.

Output

OutputThis statement returns a confirmation of a successful operation.

427

connect

Purpose

Purpose The purpose of the connect statement is to authenticate a jobserver to the server.

Syntax

Syntax The syntax for the connect statement is

connect jobserver serverpath . servername identified by string [with
WITHITEM {, WITHITEM}]

WITHITEM:
command = (sdms-command {; sdms-command})

| method = string
| protocol = PROTOCOL

| session = string
| timeout = integer
| token = string
| < trace | notrace >
| trace level = integer

PROTOCOL:
json [ZERO TERMINATED]

| line
| perl [ZERO TERMINATED]
| python [ZERO TERMINATED]
| serial
| xml

Description

Description The connect command is used to authenticate the connected process on the server
to. A communication protocol can be optionally specified. The default protocol is
line.
The selected protocol defines the output format. All protocols except for serial
return ASCII output. The protocol serial returns a serialized Java object.
An executable command can also be returned when the connection is established.
In this case, the output of the accompanying command is used as the output for
the connect command. If the command fails, but the connect was successful, the
connection remains active.
An example for all protocols except the serial protocol is given below.

428

line protocol The line protocol only returns an ASCII text as the result from a
command.

connect donald identified by 'duck' with protocol = line;

Connect

CONNECT_TIME : 19 Jan 2005 11:12:43 GMT

Connected

SDMS>

XML protocol The XML protocol returns an XML structure as the result from a
command.

connect donald identified by 'duck' with protocol = xml;
<OUTPUT>
<DATA>
<TITLE>Connect</TITLE>
<RECORD>
<CONNECT_TIME>19 Jan 2005 11:15:16 GMT</CONNECT_TIME></RECORD>
</DATA>
<FEEDBACK>Connected</FEEDBACK>
</OUTPUT>

python protocol The python protocol returns a Python structure that can be
valuated using the Python eval function.

connect donald identified by 'duck' with protocol = python;
{
'DATA' :
{
'TITLE' : 'Connect',
'DESC' : [
'CONNECT_TIME'
],
'RECORD' : {
'CONNECT_TIME' : '19 Jan 2005 11:16:08 GMT'}
}
,'FEEDBACK' : 'Connected'
}

perl protocol The perl protocol returns a Perl structure that can be valuated
using the Perl eval function.

429

connect donald identified by 'duck' with protocol = perl;
{
'DATA' =>
{
'TITLE' => 'Connect',
'DESC' => [
'CONNECT_TIME'
],
'RECORD' => {
'CONNECT_TIME' => '19 Jan 2005 11:19:19 GMT'}
}
,'FEEDBACK' => 'Connected'
}

Output

Output This statement returns a confirmation of a successful operation.

430

deregister

Purpose

PurposeThe purpose of the deregister statement is to notify the server that the jobserver is
not to process jobs anymore. See also the register statement on page 282.

Syntax

SyntaxThe syntax for the deregister statement is

deregister serverpath . servername

Description

DescriptionThe deregister statement is used to notify the server about a more or less perma-
nent failure of a jobserver.
This message prompts different server actions. Firstly, all the running jobs on the
jobserver (i.e. jobs in the state started, running, to_kill and killed) are set to the
state broken_finished. Jobs in the state starting are reset to runnable. The job-
server is then removed from the list of jobservers that are able to process jobs so
that this jobserver is consequently no longer allocated any more jobs. A side effect
of this is that jobs that can only run on this server due to their resource requirements
are set to the state error with the message ”Cannot run in any scope because of re-
source shortage”. Finally, a complete reschedule is executed so that jobs are redis-
tributed among the jobservers. The jobserver is added to the list of job-processing
jobservers again by re-registering it (refer to the register statement on page 282).

Output

OutputThis statement returns a confirmation of a successful operation.

431

disconnect

Purpose

Purpose The purpose of the disconnect statement is to terminate the server connection.

Syntax

Syntax The syntax for the disconnect statement is

disconnect

Description

Description The connection to the server can be shut down using the disconnect statement.

Output

Output This statement returns a confirmation of a successful operation.

432

get next job

Purpose

PurposeThe purpose of the get next job command is to fetch the next assignment from the
server.

Syntax

SyntaxThe syntax for the get next job statement is

get next job

Description

DescriptionThe jobserver uses the get next job statement to fetch the next command to be
executed from the server.

Output

OutputThis statement returns an output structure of type table.

Output Description The data items of the output are described in the table
below.

Field Description
COMMAND The command to be executed by the jobserver

(NOP, ALTER, SHUTDOWN, STARTJOB)
CONFIG Changed configuration. This value is only

present in the case of an ALTER command.
ID The Id of the job to be started; only present for

the STARTJOB command.
DIR The working directory of the job to be started;

only present for the STARTJOB command.
LOG The log file of the job to be started; only present

for the STARTJOB command.
LOGAPP Indicator showing whether the log file is to

be opened with Append; only present for the
STARTJOB command.

ERR The error log file of the job to be started; only
present for the STARTJOB command.

Continued on next page

433

Continued from previous page

Field Description
ERRAPP Indicator showing whether the error log file is

to be opened with Append; only present for the
STARTJOB command.

CMD File name of the executable to be started; only
present for the STARTJOB command.

ARGS The command line parameter of the executable
to be started; only present for the STARTJOB
command.

ENV Additional entries for the environment of the
executable to be started; only present for the
STARTJOB command.

RUN Number of the run. Refer also to the alter
job statement on page 69; only present for the
STARTJOB command.

JOBENV Vector of key value pairs defining the job de-
fined environment variables to set before job ex-
ecution

Table 27.1.: Description of the output structure of the get next job statement

434

multicommand

Purpose

PurposeThis statement is used to control the behaviour of the SDMS Server.

Syntax

SyntaxThe syntax for the multicommand statement is

begin multicommand commandlist end multicommand

begin multicommand commandlist end multicommand rollback

Description

DescriptionThe multicommands allow multiple SDMS commands to be executed together,
i.e. in one transaction. This ensures that either all the statements are executed
without any errors or nothing happens at all. Not only that, but the transaction is
not interrupted by other write transactions.
If the rollback keyword is specified, the transaction is undone at the end of the
processing. This means that you can test whether the statements can be correctly
processed (technically speaking).

Output

OutputThis statement returns a confirmation of a successful operation.

435

reassure

Purpose

Purpose The purpose of the reassure job statement is to get a confirmation from the server
about the necessity of starting a job after a jobserver was started.

Syntax

Syntax The syntax for the reassure statement is

reassure jobid [with run = integer]

Description

Description With the reassure statement a jobserver gets a confirmation from the server as to
whether a job should be started. This statement is used when a jobserver boots up
and there is a job in the starting state.

Output

Output This statement returns a confirmation of a successful operation.

436

register

Purpose

PurposeThe purpose of the register statement is to notify the server that the jobserver is
ready to process jobs.

Syntax

SyntaxThe syntax for the register statement is

register serverpath . servername
with pid = pid [suspend]

register with pid = pid

Description

DescriptionThe first form is used by the operator to enable jobs to be executed by the speci-
fied jobserver.
The second form is used by the jobserver itself to notify the server that it is ready
to execute jobs.
Jobs are scheduled for this jobserver (unless it is suspended) regardless of whether
the server is connected or not.
Refer to the ’deregister’ statement on page 180.

pid The pid option provides the server with information about the jobserver’s
process Id at operating level.

suspend The suspend option causes the jobserver to be transferred to a sus-
pended state.

Output

OutputThis statement returns a confirmation of a successful operation.

437

Part IV.

Job Commands

439

28. Job Commands

441

alter job

Purpose

Purpose The purpose of the alter job statement is to change properties of the specified job.
This statement is is used by job administrators, jobservers, and by the job itself.

Syntax

Syntax The syntax for the alter job statement is

alter job jobid
with WITHITEM {, WITHITEM}

alter job
with WITHITEM {, WITHITEM}

WITHITEM:
< disable | enable >

| < suspend | suspend restrict | suspend local | suspend local restrict >
| cancel
| clear warning
| clone [< resume | suspend >]
| comment = string
| error text = string
| exec pid = pid
| exit code = signed_integer
| exit state = statename [force]
| ext pid = pid
| ignore resource = (id {, id})
| ignore dependency = (jobid [recursive] {, jobid [recursive]})
| kill [recursive]
| nicevalue = signed_integer
| priority = integer
| renice = signed_integer
| rerun [recursive]
| resume
| < noresume | resume in period | resume at datetime >
| run = integer
| state = JOBSTATE

| timestamp = string
| warning = string

442

JOBSTATE:
broken active

| broken finished
| dependency wait
| error
| finished
| resource wait
| running
| started
| starting
| synchronize wait

Description

DescriptionThe alter job command is used for several purposes. Firstly, jobservers use this
command to document the progress of a job. All the state transitions a job under-
goes during the time when the job is the responsibility of a jobserver are performed
using the alter job command.
Secondly, some changes such as ignoring dependencies or resources, as well as
changing the priority of a job, are carried out manually by an administrator.
The Exit State of a job in a Pending State can be set by the job itself or by a process
that knows the job ID and key of the job that is to be changed.

cancel The cancel option is used to cancel the addressed job and all non-Final
Children. A job can only be cancelled if neither the job itself nor one of its children
is active. Cancelling a running job will set the job in a cancelling state. The effective
cancel is postponed until the job is finished.
If a Scheduling Entity is dependent upon the cancelled job, it can become unreach-
able. In this case the dependent job does not acquire the Unreachable Exit State
defined in the Exit State Profiles, but is set as having the Job State ”Unreachable”.
It is the operator’s task to restore this job back to the job state ”Dependency Wait”
by ignoring dependencies or even to cancel it.
Cancelled jobs are considered to be just like Final Jobs without a Final Exit. This
means that the parents of a cancelled job become final without taking into consid-
eration the Exit State of the cancelled job. In this case the dependent jobs of the
parents continue running normally.
The cancel option can only be used by users.

comment The comment option is used to document an action or to add a com-
ment to the job. Comments can have a maximum length of 1024 characters. Any
number of comments can be saved for a job.
Some comments are saved automatically. For example, if a job attains a Restartable
State, a log is written to document this fact.

443

error text The error text option is used to write error information about a job.
This can be done by the responsible jobserver or a user. The server can write this
text itself as well.
This option is normally used if the jobserver cannot start the corresponding pro-
cess. Possible cases are where it is not possible to switch to the defined working
directory, if the executable program cannot be found, or when opening the error
log file triggers an error.

exec pid The exec pid option is used exclusively by the jobserver to set the
process ID of the control process within the server.

exit code The exit code option is used by the jobserver to tell the repository
server with which Exit Code the process has finished. The repository server now
calculates the matching Exit State from the Exit State Mapping that was used.

exit state The exit state option is used by jobs in a pending state to set their
state to another value. This is usually a Restartable or Final State.
Alternatively, this option can be used by administrators to set the state of a non-
final job.
If the Force Flag is not being used, the only states that can be set are those which
are theoretically attainable by applying the Exit State Mapping to any Exit Code.
The set state must exist in the Exit State Profile.

ext pid The ext pid option is used exclusively by the jobserver to set the process
ID of the started user process.

ignore resource The ignore resource option is used to revoke individual Re-
source Requests. The ignored resource is then no longer requested.
If the parameters of a resource are being referenced, that resource cannot be ig-
nored.
If invalid IDs have been specified, it is skipped. All other specified resources are
ignored. Invalid IDs in this context are the IDs of resources that are not requested
by the job.
The ignoring of resources is logged.

ignore dependency The ignore dependency option is used to ignore defined
dependencies. If the recursive flag is used, not only do the job or batch ignore the
dependencies, but its children do so as well.

444

kill The kill option is used to submit the defined Kill Job. If no Kill Job has been
defined, it is not possible to forcibly terminate the job from within BICsuite. The job
obviously has to be active, that means it must be running, killed or broken_active.
The last two states are not regular cases. When a Kill Job has been submitted, the
Job State is to_kill. After the Kill Job has terminated, the Job State of the killed job
is set to killed unless it has been completed, in which case it is finished or final.
This means that the job with the Job State killed is always still running and that at
least one attempt has been made to terminate it.

nicevalue The nicevalue option is used to change the priority or the nicevalue
of a job or batch and all of its children. If a child has several parents, any changes
you make can, but do not necessarily have to, affect the priority of the child in the
nicevalue of one of the parents. Where there are several parents, the maximum
nicevalue is searched for.
This means that if Job C has three Parents P1, P2 and P3, whereby P1 sets a nice
value of 0, P2 sets a nicevalue of 10 and P3 a nicevalue of -10, the effective nicevalue
is -10. (The lower the nicevalue the better). If the nicevalue for P2 is changed to -5,
nothing happens because the -10 of P3 is better than -5. If the nicevalue of P3 falls
to 0, the new effective nicevalue for Job C is -5.
The nicevalues can have values between -100 and 100. Values that exceed this range
are tacitly adjusted.

priority The priority option is used to change the (static) priority of a job. Be-
cause batches and milestones are not executed, priorities are irrelevant to them.
Changing the priority only affects the changed job. Valid values lie between 0 and
100. In this case, 100 corresponds to the lowest priority and 0 is the highest priority.
When calculating the dynamic priority of a job, the scheduler begins with the static
priority and adjusts it according to how long the job has already been waiting. If
more than one job has the same dynamic priority, the job with the lowest job ID is
scheduled first.

renice The renice option is similar to the nicevalue option with the difference
that the renice option functions relatively while the nicevalue option functions ab-
solutely. If some batches have a nicevalue of 10, a renice of -5 causes the nicevalue
to rise to 5. (It rises because the lower the number, the higher the priority).

rerun The rerun option is used to restart a job in a Restartable State. If you
attempt to restart a job that is not restartable, an error message is displayed. A
job is restartable if it is in a Restartable State or it has the Job State error or bro-
ken_finished.
If the recursive flag has been specified, the job itself and all its direct and indirect
children that are in a Restartable State are restarted. If the job itself is final, this is

445

not considered to be an error. It is therefore possible to recursively restart batches.

resume The resume option is used to reactivate a suspended job or batch.
There are two ways to do this. The suspended job or batch can either be reacti-
vated immediately or a delay can be set.
A delay can be achieved by specifying either the number of time units for the delay
the time when the job or batch is to be activated.
For details about specifying a time, refer to the overview on page 20. The resume
option can be used together with the suspend option. Here, the job is suspended
and then resumed again after (or at) a specified time.

run The run option is used by the jobserver to ensure that the modified job
matches the current version.
Theoretically, the computer could crash after a job has been started by a jobserver.
To complete the work, the job is manually restarted from another jobserver. After
the first system has been booted, the jobserver can attempt to change the job state to
broken_finished without knowing anything about what happened after the crash.
Using the run option then prevents the wrong state from being set.

state The state option is mainly used by jobservers, but it can also be used by
administrators. It is not recommended to do so unless you know exactly what you
are doing.
The usual procedure is that the jobserver sets the state of a job from starting to
started, from started to running, and from running to finished. In the event of a
crash or any other problems, it is possible for the jobserver to set the job state to
broken_active or broken_finished. This means that the Exit Code of the process is
not available and the Exit State has to be set manually.

suspend The suspend option is used to suspend a batch or job. It always func-
tions recursively. If a parent is suspended, its children are all suspended as well.
The resume option is used to reverse the situation.
The effect of the restrict option is that cwa resume can be done by members of the
group ADMIN only.

timestamp The timestamp option is used by the jobserver to set the times-
tamps of the state transition in keeping with the local time from the perspective
of jobserver.

Output

Output This statement returns a confirmation of a successful operation.

446

connect

Purpose

PurposeThe purpose of the connect statement is to authenticate a job to the server.

Syntax

SyntaxThe syntax for the connect statement is

connect job jobid identified by string [with WITHITEM {, WITHITEM}]

WITHITEM:
command = (sdms-command {; sdms-command})

| method = string
| protocol = PROTOCOL

| session = string
| timeout = integer
| token = string
| < trace | notrace >
| trace level = integer

PROTOCOL:
json [ZERO TERMINATED]

| line
| perl [ZERO TERMINATED]
| python [ZERO TERMINATED]
| serial
| xml

Description

DescriptionThe connect command is used to authenticate the connected process on the server
to. A communication protocol can be optionally specified. The default protocol is
line.
The selected protocol defines the output format. All protocols except for serial
return ASCII output. The protocol serial returns a serialized Java object.
An executable command can also be returned when the connection is established.
In this case, the output of the accompanying command is used as the output for
the connect command. If the command fails, but the connect was successful, the
connection remains active.
An example for all protocols except the serial protocol is given below.

447

line protocol The line protocol only returns an ASCII text as the result from a
command.

connect donald identified by 'duck' with protocol = line;

Connect

CONNECT_TIME : 19 Jan 2005 11:12:43 GMT

Connected

SDMS>

XML protocol The XML protocol returns an XML structure as the result from a
command.

connect donald identified by 'duck' with protocol = xml;
<OUTPUT>
<DATA>
<TITLE>Connect</TITLE>
<RECORD>
<CONNECT_TIME>19 Jan 2005 11:15:16 GMT</CONNECT_TIME></RECORD>
</DATA>
<FEEDBACK>Connected</FEEDBACK>
</OUTPUT>

python protocol The python protocol returns a Python structure that can be
valuated using the Python eval function.

connect donald identified by 'duck' with protocol = python;
{
'DATA' :
{
'TITLE' : 'Connect',
'DESC' : [
'CONNECT_TIME'
],
'RECORD' : {
'CONNECT_TIME' : '19 Jan 2005 11:16:08 GMT'}
}
,'FEEDBACK' : 'Connected'
}

perl protocol The perl protocol returns a Perl structure that can be valuated
using the Perl eval function.

448

connect donald identified by 'duck' with protocol = perl;
{
'DATA' =>
{
'TITLE' => 'Connect',
'DESC' => [
'CONNECT_TIME'
],
'RECORD' => {
'CONNECT_TIME' => '19 Jan 2005 11:19:19 GMT'}
}
,'FEEDBACK' => 'Connected'
}

Output

OutputThis statement returns a confirmation of a successful operation.

449

disconnect

Purpose

Purpose The purpose of the disconnect statement is to terminate the server connection.

Syntax

Syntax The syntax for the disconnect statement is

disconnect

Description

Description The connection to the server can be shut down using the disconnect statement.

Output

Output This statement returns a confirmation of a successful operation.

450

get parameter

Purpose

PurposeThe purpose of the get parameter statement is to get the value of the specified
parameter within the context of the requesting job, respectively the specified job.

Syntax

SyntaxThe syntax for the get parameter statement is

get parameter parametername [< strict | warn | liberal >]

get parameter of jobid parametername [< strict | warn | liberal >]

Description

DescriptionThe get parameter statement is used to get the value of the specified parameter
within the context of a job.
The additional option has the following meaning:

Option Meaning
strict The server returns an error if the requested parameter is not explicitly

declared in the job definition.
warn A message is written to the server’s log file when an attempt is made

to determine the value of an undeclared parameter.
liberal An attempt to query an undeclared parameter is tacitly allowed.

The default behaviour depends on the configuration of the server.

Output

OutputThis statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
VALUE Value of the requested parameter

Table 28.1.: Description of the output structure of the get parameter statement

451

get submittag

Purpose

Purpose The purpose of the get submittag statement is to get a (server local) unique iden-
tifier from the server. This identifier can be used to avoid race conditions between
frontend and backend when submitting jobs.

Syntax

Syntax The syntax for the get submittag statement is

get submittag

Description

Description The get submittag statement is used to acquire an identification from the server.
This prevents race conditions between the front end and back end when jobs are
submitted.
Such a situation arises when feedback about the submit does not reach the front
end due to an error. By using a submittag, the front end can safely start a sec-
ond attempt. The server recognises whether the job in question has already been
submitted and responds accordingly. This reliably prevents the job from being sub-
mitted twice.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
VALUE The requested Submit Tag

Table 28.2.: Description of the output structure of the get submittag statement

452

multicommand

Purpose

PurposeThis statement is used to control the behaviour of the SDMS Server.

Syntax

SyntaxThe syntax for the multicommand statement is

begin multicommand commandlist end multicommand

begin multicommand commandlist end multicommand rollback

Description

DescriptionThe multicommands allow multiple SDMS commands to be executed together,
i.e. in one transaction. This ensures that either all the statements are executed
without any errors or nothing happens at all. Not only that, but the transaction is
not interrupted by other write transactions.
If the rollback keyword is specified, the transaction is undone at the end of the
processing. This means that you can test whether the statements can be correctly
processed (technically speaking).

Output

OutputThis statement returns a confirmation of a successful operation.

453

set parameter

Purpose

Purpose The purpose of the set parameter statement is to set the value of the specified
parameters within the context of the requesting job, respectively the specified job.

Syntax

Syntax The syntax for the set parameter statement is

set parameter parametername = string {, parametername = string}

set parameter < on | of > jobid parametername = string {,
parametername = string} [with comment = string]

set parameter < on | of > jobid parametername = string {,
parametername = string} identified by string [with comment = string]

Description

Description The set parameter statements can be used to set jobs or user parameter values in
the context of the job.
If the identified by option is specified, the parameter is only set if the pair jobid
and string would allow a logon.

Output

Output This statement returns a confirmation of a successful operation.

454

set state

Purpose

PurposeThe purpose of the set state statement is to set the exit state of a job in a pending
exit state.

Syntax

SyntaxThe syntax for the set state statement is

set state = statename

Description

DescriptionThe set state statement is used to set the Exit State of a job to a Pending Exit State.

Output

OutputThis statement returns a confirmation of a successful operation.

455

submit

Purpose

Purpose The purpose of the submit statement is to execute a master batch or job as well as
all defined children.

Syntax

Syntax The syntax for the submit statement is

submit < folderpath | id > [with WITHITEM {, WITHITEM}]

submit aliasname [with WITHITEM {, WITHITEM}]

WITHITEM:
check only

| childtag = string
| < enable | disable >
| master
| nicevalue = signed_integer
| parameter = none
| parameter = (PARAM {, PARAM})
| < noresume | resume in period | resume at datetime >
| submittag = string
| < nosuspend | suspend >

| time zone = string
| unresolved = JRQ_UNRESOLVED

| group = groupname

PARAM:
parametername = < string | number >

JRQ_UNRESOLVED:
defer

| defer ignore
| error
| ignore
| suspend

456

Description

DescriptionThe submit statement is used to submit a job or batch. There are two kinds of
submit command:

• The first kind is used by users, who can also be programs, and the Time
Scheduling Module. This form submits Master Jobs and Batches.

• The second form of the statement is used by jobs to submit dynamic children.

check only The check only option is used to verify whether a Master Submit-
table Batch or Job can be submitted. This means that a check is run to ascertain
whether all the dependencies can be fulfilled and all the referenced parameters are
defined.
Whether the jobs can be executed in any scope or not is not verified. This is a
situation that can arise at any point during the runtime.
Positive feedback means that, from the system’s perspective, the job or batch can
be submitted.

childtag The childtag option is used by jobs to submit several instances of the
same Scheduling Entity and to be able to differentiate between them.
An error is triggered if the same Scheduling Entity is submitted twice using the
same childtag. The content of the childtag has no further significance for the Schedul-
ing System.
The maximum length for a childtag is 70 characters. The childtag option is ignored
in the case of a Master Submit.

group The group option is used to set the owner group to the specified value.
The user must belong to this group unless he belongs to the ADMIN privileged
group. In this case, any group can be specified.

nicevalue The nicevalue option defines a correction that is used for the calcu-
lation of the priorities for the job and its children. Values between -100 and 100 are
permitted.

parameter The parameter option is used to specify the value of Job Parameters
for the submit. The parameters are set in the scope of the Master Batch or Job. This
means that if parameters are specified that are not defined in the Master Batch or
Job, these parameters are invisible to any children.

457

submittag If the submittag is specified, it must have a unique name for the
Submitted Entity. This tag was introduced to be able to programmatically submit
jobs and batches and to resubmit the job or batch with the same tag following a
crash of one of the components. If the job submit was successful the first time, the
second submit will report an error. If not, the second submit will succeed.

unresolved The unresolved option defines how the server is to react to unre-
solved dependencies. This option is mainly used if parts of a batch are submitted
following repair work. The faulty part is normally cancelled and then resubmit-
ted as a Master Run. In this case the previous dependencies have to be ignored
otherwise the submit will fail.

suspend The suspend option is used to submit jobs or batches and to suspend
them at the same time. If nothing is defined, they are not suspended. This can be
explicitly specified at the submit time.
If a job or batch was suspended, neither it nor its children are started. If a job is
already running, it will not reach a Final State if it is suspended.

resume The resume option can be used together with the suspend option to
cause a delayed execution. There are two ways to do this. A delay can be achieved
by specifying either the number of time units for the delay the time when the job
or batch is to be activated.
This option can be used to reproduce the at functionality without creating a sched-
ule.

Output

Output This statement returns an output structure of type record.

Output Description The data items of the output are described in the table
below.

Field Description
ID Id of the Submitted Entity

Table 28.3.: Description of the output structure of the submit statement

458

Part V.

Programming Examples

459

29. Programming examples

This section contains some simple examples of how to communicate with the Schedul-
ing Server in several different programming languages.
The examples are intended to show the essential structures. The error handling is
extremely rudimentary, and the processing of the server responses is also kept to a
minimum.
As usual, some details are required to log on to the Scheduling Server: Host name
or IP address of the system on which the Scheduling Server is running, the port to
which it responds (usually 2506), a user name and a password. In our examples
this data is defined as constants. It may be obvious that a serious implementation
should use another method such as evaluating the .sdmshrc.
All the programs shown are available as source code under $BICSUITEHOME/examples.

Java

JavaSince schedulix is itself written in Java, the BICsuite.jar can be used for
developing utilities in Java.
In the example below, the SDMSServerConnection is used to set up the con-
nection to the Scheduling Server. To do this, first of all an object is created using
the standard information. The connection is then established using the connect()
method. The finish() method is used to terminate the connection.
As long as the connection is active, any number of statements can be executed with
the help of the execute() method. In the example below, the list sessions;
command is executed.
An object of the type SDMSOutput is returned as the result. If the Member Variable
error is not null, an error occurred while the command was being processed.
The Member Variables error.code and error.message give more details about
the error.
In our example, the class SDMSLineRenderer is used to return the formatted re-
sult of the command at stdout.
The error handling is kept extremely simple. If an error occurs, the program is
exited with a Return Code 1.

1 import de.independit.scheduler.shell.SDMSServerConnection;
2 import de.independit.scheduler.server.output.SDMSOutput;
3 import de.independit.scheduler.server.output.SDMSLineRenderer;
4 import java.io.IOException;
5

461

6 public class SimpleAccess
7 {
8

9 private static SDMSServerConnection sc = null;
10 private static SDMSLineRenderer lr = null;
11

12 public static void main(String argv[])
13 {
14 sc = new SDMSServerConnection(
15 "localhost", /* host */
16 2506, /* port */
17 "SYSTEM", /* user */
18 "G0H0ME", /* password */
19 0, /* connection timeout disabled */
20 false /* no TLS */
21);
22 lr = new SDMSLineRenderer();
23

24 try {
25 SDMSOutput o = sc.connect(null /* no special options */);
26 if (o.error != null) {
27 System.err.println("Connect Error: " +
28 o.error.code + ", " + o.error.message)

;
29 System.exit(1);
30 }
31

32 o = sc.execute("LIST SESSIONS;");
33 try {
34 lr.render(System.out, o);
35 } catch (Exception e) {
36 System.err.println("Something went wrong: " +
37 e.toString());
38 }
39

40 sc.finish();
41 } catch (IOException ioe) {
42 System.err.println("Something went wrong : " +
43 ioe.toString());
44 System.exit(1);
45 }
46

47 System.exit(0);
48 }
49 }

To convert the Java program, the the BICsuite.jar should be included in the
CLASSPATH. Under Unix or Linux, that could look like this (the output lines have
been shortened for reasons of clarity):

$ CLASSPATH=$CLASSPATH:$BICSUITEHOME/lib/BICsuite.jar

462

$ export CLASSPATH
$ javac SimpleAccess.java
$ java SimpleAccess

List of Sessions

THIS SESSIONID PORT START TYPE USER ...
---- --------- ---- ----------------------------- --------- ---------------...

1001 2506 Mon Oct 12 11:25:47 CEST 2020 JOBSERVER GLOBAL.EXAMPLES...
1002 2506 Mon Oct 12 11:25:47 CEST 2020 JOBSERVER GLOBAL.EXAMPLES...
1003 2506 Mon Oct 12 11:25:47 CEST 2020 JOBSERVER GLOBAL.EXAMPLES...

* 1043 2506 Wed Oct 21 15:00:12 CEST 2020 USER SYSTEM ...
1234321 0 Mon Oct 12 11:25:22 CEST 2020 USER SchedulingThrea...
1234322 0 Mon Oct 12 11:25:22 CEST 2020 USER GarbageThread...
1234323 0 Mon Oct 12 11:25:22 CEST 2020 USER TriggerThread ...
1234324 0 Mon Oct 12 11:25:22 CEST 2020 USER PoolThread ...
19630127 0 Mon Oct 12 11:25:22 CEST 2020 USER TimerThread ...

9 Session(s) found

A second example shows how attributes from the output structure can be queried.
In this example, two commands are executed after the connection has been estab-
lished, and data is then selectively extracted and outputted from the two results.
The result of a SHOW SYSTEM command is always a record with a table. In line
41, the version information is extracted from the record data. In lines 44 to 47, the
names of the worker threads from the table named WORKER are determined.
The result of a LIST SESSIONS command is always a pure table. In lines 58 to 61,
the names of the logged-on users, job servers and internal threads are determined
and outputted.

1 import java.io.IOException;
2 import de.independit.scheduler.shell.SDMSServerConnection;
3 import de.independit.scheduler.server.output.SDMSOutput;
4 import de.independit.scheduler.server.output.SDMSOutputUtil;
5

6 public class testJavaApi {
7

8 public static void main(String[] args) {
9

10 SDMSServerConnection sc = new SDMSServerConnection(
11 "localhost", /* host */
12 2506, /* port */
13 "SYSTEM", /* user */
14 "G0H0ME", /* password */
15 0, /* connection timeout disabled */
16 false /* no TLS */
17);
18 SDMSOutput output = null;
19

20 try {
21 output = sc.connect(null);
22 } catch (IOException ioe) {

463

23 System.err.println("Error '" + ioe.toString() +
24 "' establishing BICsuite server connection");
25 System.exit(1);
26 }
27 if (output.error != null) {
28 System.err.println("Error '" + output.error.code + ":" +
29 output.error.message + "' connecting to BICsuite

server");
30 System.exit(1);
31 }
32

33 String command = "SHOW SYSTEM";
34 output = sc.execute(command);
35 if (output.error != null) {
36 System.err.println("Error '" + output.error.code + ":" +
37 output.error.message + "' executing command: " +

command);
38 System.exit(1);
39 }
40

41 System.out.println("Version: " + SDMSOutputUtil.getFromRecord(
output,"VERSION"));

42 int workers = SDMSOutputUtil.getTableLength(output,"WORKER");
43 System.out.println("Workers: " + workers);
44 for (int i = 0; i < workers; i ++) {
45 System.out.println(" Name: " +
46 SDMSOutputUtil.getFromTable(output, "WORKER", i, "NAME

"));
47 }
48

49 command = "LIST SESSIONS";
50 output = sc.execute(command);
51 if (output.error != null) {
52 System.err.println("Error '" + output.error.code + ":" +
53 output.error.message + "' executing command: " +

command);
54 System.exit(1);
55 }
56 int sessions = SDMSOutputUtil.getTableLength(output);
57 System.out.println("Sessions: " + sessions);
58 for (int i = 0; i < sessions; i ++) {
59 System.out.println(" User: " +
60 SDMSOutputUtil.getFromTable(output, i, "USER"));
61 }
62

63 try {
64 sc.finish();
65 } catch (IOException ioe) {
66 System.err.println("Error '" + ioe.toString() +
67 "' closing BICsuite server connection");
68 System.exit(1);
69 }
70 }

464

71 }

Converting and executing the program obviously functions in the same way as in
the first example. The CLASSPATH obviously does not have to be set again before
every conversion or execution.

$ CLASSPATH=$CLASSPATH:$BICSUITEHOME/lib/BICsuite.jar
$ export CLASSPATH
$ javac testJavaApi.java
$ java testJavaApi
Version: 2.10
Workers: 6

Name: Worker0
Name: Worker1
Name: Worker2
Name: Worker3
Name: Worker4
Name: Worker5

Sessions: 9
User: GLOBAL.EXAMPLES.HOST_1.SERVER
User: GLOBAL.EXAMPLES.LOCALHOST.SERVER
User: GLOBAL.EXAMPLES.HOST_2.SERVER
User SYSTEM
User: SchedulingThread
User: GarbageThread
User: TriggerThread
User: PoolThread
User: TimerThread

Python 2

Python 2Access with Python 2 is also pretty simple. After all, the Zope application server
was written in Python and uses the file sdms.py as an extension to handle com-
munication with the Scheduling Server.
This file can obviously also be used by any other Python script.
The SDMSConnectionOpenV2() method is used to set up the connection to the
Scheduling Server. This method requires a dictionary with a specified host and port
as the first parameter. Two other parameters specify the user and the password.
The last parameter is optional and is only used to give the session a meaningful
name.
If the connection attempt fails, a dictionary is returned instead of a socket object.
This can be easily checked using the has_key method in a try - except block. In
the code fragment below, this is shown in lines 11 to 16.
As soon as the connection has been established, any commands can be executed us-
ing SDMSCommandWithSoc. The result is always an SDMSOutput data structure.
If an error has occurred, it contains an ERROR entry.
The close() method terminates the connection.

1 import sdms
2

465

3 server = {'HOST' : 'localhost',
4 'PORT' : '2506',
5 'USER' : 'SYSTEM',
6 'PASSWORD' : 'G0H0ME' }
7 conn = sdms.SDMSConnectionOpenV2(server,
8 server['USER'],
9 server['PASSWORD'],

10 "Simple Access Example")
11 try:
12 if conn.has_key('ERROR'):
13 print str(conn)
14 exit(1)
15 except:
16 pass
17

18 stmt = "LIST SESSIONS;"
19 result = sdms.SDMSCommandWithSoc(conn, stmt)
20 if result.has_key('ERROR'):
21 print str(result['ERROR'])
22 else:
23 for row in result['DATA']['TABLE']:
24 print "{0:3} {1:8} {2:32} {3:9} {4:15} {5:>15} {6}".format(\
25 row['THIS'], \
26 row['UID'], \
27 row['USER'], \
28 row['TYPE'], \
29 row['START'], \
30 row['IP'], \
31 row['INFORMATION'])
32

33 Connected

To execute the program, it is only necessary to set the PYTHONPATH accordingly.
The output has been shortened for reasons of clarity.

$ PYTHONPATH=$PYTHONPATH:$BICSUITEHOME/../schedulixweb/Extensions
$ export PYTHONPATH
$ python2 SimpleAccess.py

1047 GLOBAL.EXAMPLES.HOST_1.SERVER JOBSERVER Mon Oct 12 11:25:47 CEST 20...
1037 GLOBAL.EXAMPLES.LOCALHOST.SERVER JOBSERVER Mon Oct 12 11:25:47 CEST 20...
1057 GLOBAL.EXAMPLES.HOST_2.SERVER JOBSERVER Mon Oct 12 11:25:47 CEST 20...

* 0 SYSTEM USER Wed Oct 21 14:20:40 CEST 20...
2 SchedulingThread USER Mon Oct 12 11:25:22 CEST 20...
2 GarbageThread USER Mon Oct 12 11:25:22 CEST 20...
2 TriggerThread USER Mon Oct 12 11:25:22 CEST 20...
2 PoolThread USER Mon Oct 12 11:25:22 CEST 20...
2 TimerThread USER Mon Oct 12 11:25:22 CEST 20...

Python 3

Python 3 In a Python 3 environment, everything runs analogue to the Python 2 environ-
ment while obviously taking into account the differences between the two lan-

466

guages. The Python 3 module is located in the Zope 4 tree under Extensions.

1 import sdms
2

3 server = {'HOST' : 'localhost',
4 'PORT' : '2506',
5 'USER' : 'SYSTEM',
6 'PASSWORD' : 'G0H0ME' }
7 conn = sdms.SDMSConnectionOpenV2(server,
8 server['USER'],
9 server['PASSWORD'],

10 "Simple Access Example")
11 try:
12 if 'ERROR' in conn:
13 print(str(conn))
14 exit(1)
15 except:
16 pass
17

18 stmt = "LIST SESSIONS;"
19 result = sdms.SDMSCommandWithSoc(conn, stmt)
20 if 'ERROR' in result:
21 print(str(result['ERROR']))
22 else:
23 for row in result['DATA']['TABLE']:
24 print("{0:3} {1:8} {2:32} {3:9} {4:15} {5:>15} {6}".format(\
25 str(row['THIS']), \
26 str(row['UID']), \
27 str(row['USER']), \
28 str(row['type']), \
29 str(row['START']), \
30 str(row['IP']), \
31 str(row['INFORMATION'])))
32

33 conn.close()

The execution method is exactly the same as with Python 2:

$ PYTHONPATH=$PYTHONPATH:$BICSUITEHOME/../schedulixweb4/Extensions
$ export PYTHONPATH
$ python3 SimpleAccess3.py

1047 GLOBAL.EXAMPLES.HOST_1.SERVER JOBSERVER Mon Oct 12 11:25:47 CEST 20...
1037 GLOBAL.EXAMPLES.LOCALHOST.SERVER JOBSERVER Mon Oct 12 11:25:47 CEST 20...
1057 GLOBAL.EXAMPLES.HOST_2.SERVER JOBSERVER Mon Oct 12 11:25:47 CEST 20...

* 0 SYSTEM USER Wed Oct 21 15:33:31 CEST 20...
2 SchedulingThread USER Mon Oct 12 11:25:22 CEST 20...
2 GarbageThread USER Mon Oct 12 11:25:22 CEST 20...
2 TriggerThread USER Mon Oct 12 11:25:22 CEST 20...
2 PoolThread USER Mon Oct 12 11:25:22 CEST 20...
2 TimerThread USER Mon Oct 12 11:25:22 CEST 20...

467

C

C Our C API is used for access from a C program. This can be found at $BICSUITEHOME/src/capi.
C is, of course, a relatively hardware-oriented programming language in which as-
pects such as memory management are largely left to the developer. That is why
handling with the output structures is also more complex than in Java or Python.
However, we have attempted to make the whole operation as simple as possible.
The prototypes of the available functions stand in the sdms_api.h\ header file.
The relevant part of the file is shown below.

1 extern int sdms_connection_open(SDMS_CONNECTION **connection, char *host,
int port,

2 char *user, char *password);
3 extern int sdms_command(SDMS_OUTPUT **output, SDMS_CONNECTION *connection

,
4 SDMS_STRING *command);
5 extern int sdms_connection_close(SDMS_CONNECTION **connection);
6

7 extern int sdms_string(SDMS_STRING **sdms_string, char *s);
8 extern int sdms_string_append(SDMS_STRING *string, char *text);
9 extern void sdms_string_clear(SDMS_STRING *string);

10 extern void sdms_string_free(SDMS_STRING **string);
11

12 extern int sdms_vector(SDMS_VECTOR **vector);
13 extern int sdms_vector_append(SDMS_VECTOR *vector, void *data);
14 extern void sdms_vector_free(SDMS_VECTOR **vector);
15

16 extern void sdms_output_free(SDMS_OUTPUT **output);
17

18 extern void sdms_error_print(char *text);
19 extern void sdms_error_clear(void);
20

21 extern int sdms_output_data_get_table_size(SDMS_OUTPUT_DATA *output_data,
int *size);

22 extern int sdms_vector_find(SDMS_VECTOR *vector, char *name);
23 extern int sdms_output_data_get_by_name (SDMS_OUTPUT_DATA *output_data,
24 SDMS_OUTPUT_DATA **value, char *

name);
25 extern int sdms_output_data_get_string(SDMS_OUTPUT_DATA *output_data,

char **value);
26 extern int sdms_output_data_get_row(SDMS_OUTPUT_DATA *output_data,
27 SDMS_VECTOR **row, int index);

The functions sdms_connection_open() and sdms_connection_close() are
self-explanatory. The function sdms_command() executes the command specified
in command. The result is returned in the parameter output.
Since a parameter of the type SDMS_STRING is required to execute commands, a
number of functions are provided for handling this data type. A normal string in C

468

can be converted into a SDMS_STRINGwith the help of the function sdms_string().
The function sdms_string_append() is used to create an SDMS_STRING to ex-
pand the specified text. The function sdms_string_clear() deletes the con-
tents of the string. Since dynamically allocated memory is required for working
with strings, finally there is the sdms_string_free() function for freeing up the
memory again in a controlled manner.
In many cases, data is returned as a list of values or even lists. In Java, this is
done using a vector. Based on this, an SDMS_VECTOR is provided in the C inter-
face. The functions for manipulating this data structure are roughly comparable to
the SDMS_STRING functions. Normally, however, these functions are not used in
applications because the vectors are not built by the application, but rather by the
interface. Much more interesting, though, are the functions that extract elementary
data from the vectors.
The data structure SDMS_OUTPUT is the comprehensive container in which the re-
sults of commands are returned. This container is made up of different data types
which are usually stored in dynamically allocated memory blocks. To enable this
memory to be freed up again, the function sdms_output_free() is called. This
function also correctly takes into account the dynamic internal data structure.
True to the motto ”a picture says more than a thousand words”, in the program
below a SHOW USER; as well as a LIST SESSIONS; are executed after the con-
nection has been established, and the results are displayed on the screen.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 #ifdef _WIN32
5 #include <winsock.h>
6 #endif
7

8 #include "sdms_api.h"
9

10 /* some constants / literals */
11 /* default values */
12 char * LOCALHOST = (char *) "localhost";
13 char * PORT = (char *) "2506";
14 char * SYSTEM = (char *) "SYSTEM";
15 char * PASSWD = (char *) "G0H0ME";
16

17 /* column names */
18 char * NAME = (char *) "NAME";
19 char * GROUPS = (char *) "GROUPS";
20 char * SESSIONID = (char *) "SESSIONID";
21 char * USER = (char *) "USER";
22

23 /* used commands */
24 char * SHOW_USER = (char *) "SHOW USER;";
25 char * LIST_SESSION = (char *) "LIST SESSIONS;";
26

469

27 void do_exit (int exit_code);
28

29 /* sdms_connection_open() requires initialized pointer */
30 SDMS_CONNECTION *sdms_connection = NULL;
31

32 int main (int argc, char *argv[])
33 {
34 char *host;
35 char *port;
36 char *user;
37 char *pass;
38 if (argc >= 2)
39 host = argv[1];
40 else
41 host = LOCALHOST;
42 if (argc >= 3)
43 port = argv[2];
44 else
45 port = PORT;
46 if (argc >= 4)
47 user = argv[3];
48 else
49 user = SYSTEM;
50 if (argc >= 5)
51 pass = argv[4];
52 else
53 pass = PASSWD;
54

55

56 #ifdef _WIN32
57 WSADATA wsaData;
58 if (WSAStartup (MAKEWORD(1, 1), &wsaData) != 0) {
59 fprintf (stderr, "WSAStartup(): Can't initialize Winsock.\n");
60 do_exit (1);
61 }
62 #endif
63

64 if (sdms_connection_open(&sdms_connection, host,
65 atoi(port), user, pass) != SDMS_OK) {
66 sdms_error_print((char *) "Error opening sdms connection");
67 do_exit(1);
68 }
69

70 int size;
71 int i;
72

73 printf("--\n");
74

75 /* sdms_string() requires initialized pointer */
76 SDMS_STRING *command = NULL;
77

78 /* sdms_command() requires initialized pointer */
79 SDMS_OUTPUT *sdms_output = NULL;

470

80

81 If (sdms_string (&command, SHOW_USER) != SDMS_OK) {
82 sdms_error_print((char *) "Error allocating command SDMS_STRING")

;
83 do_exit(1);
84 }
85

86 if (sdms_command (&sdms_output,
87 sdms_connection, command) != SDMS_OK) {
88 sdms_error_print((char *) "Error executing command");
89 do_exit(1);
90 }
91

92 /* sdms_output_dump(sdms_output); */
93

94 SDMS_OUTPUT_DATA *name;
95 sdms_output_data_get_by_name(sdms_output->data, &name, NAME);
96 fprintf (stderr, "User %s is in the groups", (char *)(name->data));
97

98 SDMS_OUTPUT_DATA *groups;
99 sdms_output_data_get_by_name(sdms_output->data, &groups, GROUPS);

100 int groupname_idx = sdms_vector_find(groups->desc, NAME);
101 sdms_output_data_get_table_size(groups, &size);
102 char sep = ' ';
103 for (i = 0; i < size; i ++) {
104 SDMS_VECTOR *row;
105 sdms_output_data_get_row(groups, &row, i);
106 SDMS_OUTPUT_DATA *groupname =
107 (SDMS_OUTPUT_DATA *)(row->buf[groupname_idx]);
108 fprintf (stderr, "%c%s", sep, (char *)(groupname->data));
109 sep = ',';
110 }
111 fprintf (stderr, "\n");
112

113 sdms_output_free(&sdms_output);
114

115 printf("--\n");
116

117 sdms_string_clear(command);
118 if (sdms_string_append(command, LIST_SESSION) != SDMS_OK) {
119 sdms_error_print((char *) "Error building command");
120 do_exit(1);
121 }
122 if (sdms_command (&sdms_output, sdms_connection, command) != SDMS_OK)

{
123 sdms_error_print((char *) "Error executing command");
124 do_exit(1);
125 }
126 /* sdms_output_dump(sdms_output); */
127

128 SDMS_OUTPUT_DATA *data = sdms_output->data;
129 int sessionid_idx = sdms_vector_find(data->desc, SESSIONID);
130 int user_idx = sdms_vector_find(data->desc, USER);

471

131 sdms_output_data_get_table_size(data, &size);
132 for (i = 0; i < size; i ++) {
133 SDMS_VECTOR *row;
134 sdms_output_data_get_row(data, &row, i);
135 SDMS_OUTPUT_DATA *sessionid =
136 (SDMS_OUTPUT_DATA *)(row->buf[sessionid_idx]);
137 SDMS_OUTPUT_DATA *data_user =
138 (SDMS_OUTPUT_DATA *)(row->buf[user_idx]);
139 fprintf (stderr, "User %s connected with id %s\n",
140 (char *)(data_user->data), (char *)(sessionid->data));
141 }
142

143 sdms_output_free(&sdms_output);
144

145 printf("--\n");
146

147 sdms_string_free(&command);
148

149 if (sdms_connection_close(&sdms_connection) != SDMS_OK) {
150 sdms_error_print((char *) "Error closing sdms connection");
151 do_exit(1);
152 }
153

154 return 0;
155 }
156

157 void do_exit (int exit_code)
158 {
159 // Try to close connection
160 if (sdms_connection != NULL)
161 sdms_connection_close(&sdms_connection);
162 #ifdef _WIN32
163 WSACleanup();
164 #endif
165 exit(1);
166 }

Converting and executing the program are comparatively simple. A Make file is
available for this, which should at least work on all Linux systems without any
problems. The line breaks have been added for reasons of clarity.

$ cd $BICSUITEHOME/src/capi
$ make sdms_test
cc -g -fno-exceptions -Wall -Wshadow -Wpointer-arith -Wwrite-strings \

-Wstrict-prototypes -Wmissing-declarations -Wnested-externs -DLINUX \
-Winline -O3 -I . -c sdms_api.c

cc -g -fno-exceptions -Wall -Wshadow -Wpointer-arith -Wwrite-strings \
-Wstrict-prototypes -Wmissing-declarations -Wnested-externs -DLINUX \
-Winline -O3 -I . -c sdms_test.c

cc sdms_api.o sdms_test.o -o sdms_test
$./sdms_test localhost 2506 SYSTEM G0H0ME

User SYSTEM is in the groups ADMIN,PUBLIC

472

User GLOBAL.EXAMPLES.HOST_1.SERVER connected with session id 1001
User GLOBAL.EXAMPLES.LOCALHOST.SERVER connected with session id 1002
User GLOBAL.EXAMPLES.HOST_2.SERVER connected with session id 1003
User SYSTEM connected with session id 1059
User SchedulingThread connected with session id 1234321
User GarbageThread connected with session id 1234322
User TriggerThread connected with session id 1234323
User PoolThread connected with session id 1234324
User TimerThread connected with session id 19630127

As in the previous examples, this example follows a simple approach: Either it
works or it terminates with exit code 1.
A modular design was also deliberately not used here. The fact that this is indis-
pensable for large projects should be undisputed. In this simple example, however,
it would be more of a distraction from what is to be shown.
The command line parameters are processed in lines 34 to 54. Missing parameters
are replaced with the default parameters.
The WinSock library is initialised in lines 56 to 62 (this means that the example
should also work under Windows). The symbol _WIN32 must be set to do this.
A connection with the Scheduling Server is then set up in lines 64 to 68. The pro-
gram can now communicate with the server.
The first command should be a SHOW USER. Accordingly, the command is packed
into an SDMS_STRING in line 81, and this data structure in line 86 (and line 87) is
sent to the server.
This returns a data structure of the type SDMS_OUTPUT.
The received data is outputted at stderr in lines 94 to 111. First of all, the data item
NAME is extracted from the output in line 95. The table containing groups is then
fetched in line 99. From this table, the position of the group name is determined
first (line 100) and the size of the table is queried (line 101).
This is followed by a simple loop to output the group names. The name is extracted
in lines 106 and 107 using the previously determined index.
This completes the processing of this output structure, and the allocated memory
is freed up again in line 113.
Since another command is to be executed, the memory for the old command is also
freed up in line 117.
Now everything starts from the beginning all over again. The difference between
the two commands is that a Show command always returns a record with perhaps
one or more tables. A List command, on the other hand, always returns just one
table.
Other commands, except for a few exceptions, do not return any data. In this case,
it suffices to check the return value for SDMS_OK. If an SDMS_OK is returned, it is
guaranteed that the command was also processed correctly.
The directory $BICSUITEHOME/src/capi contains a few more files. One of these
is jsstub.c. This is a small C program which, from the Scheduling Server’s point

473

of view, acts as a job server. It obediently fetches new jobs and reports them as being
finished after 10 seconds with exit code 0. It does not execute anything, however.
This small program is used by developers for running stress tests. A large number
of such dummy job servers can be started with no problems at all without putting
a heavy load on the PC. However, the Scheduling Server has to work hard to push
these windbags to their absolute limits.
It is an application written in C which is used productively in development envi-
ronments. Knowing the above, it is now possible to see how this program commu-
nicates with the server and then processes data.

474

	Table of Contents
	List of Tables
	I General
	1 Introduction
	Introduction

	2 Utilities
	Starting and stopping the server
	server-start
	server-stop

	sdmsh
	sdms-auto_restart
	sdms-get_variable
	sdms-rerun
	sdms-set_state
	sdms-set_variable
	sdms-set_warning
	sdms-submit

	II User Commands
	3 alter commands
	alter comment
	alter environment
	alter event
	alter exit state mapping
	alter exit state profile
	alter exit state translation
	alter folder
	alter footprint
	alter group
	alter interval
	alter job
	alter job definition
	alter named resource
	alter resource
	alter resource state mapping
	alter resource state profile
	alter schedule
	alter scheduled event
	alter scope
	alter server
	alter session
	alter trigger
	alter user

	4 connect commands
	connect

	5 copy commands
	copy folder
	copy named resource
	copy scope

	6 create commands
	create comment
	create environment
	create event
	create exit state definition
	create exit state mapping
	create exit state profile
	create exit state translation
	create folder
	create footprint
	create group
	create interval
	create job definition
	create named resource
	create resource
	create resource state definition
	create resource state mapping
	create resource state profile
	create schedule
	create scheduled event
	create scope
	create trigger
	create user

	7 deregister commands
	deregister

	8 disconnect commands
	disconnect

	9 drop commands
	drop comment
	drop environment
	drop event
	drop exit state definition
	drop exit state mapping
	drop exit state profile
	drop exit state translation
	drop folder
	drop footprint
	drop group
	drop interval
	drop job definition
	drop named resource
	drop resource
	drop resource state definition
	drop resource state mapping
	drop resource state profile
	drop schedule
	drop scheduled event
	drop scope
	drop trigger
	drop user

	10 finish commands
	finish job

	11 get commands
	get parameter
	get submittag

	12 kill commands
	kill session

	13 link commands
	link resource

	14 list commands
	list calendar
	list dependency definition
	list dependency hierarchy
	list environment
	list event
	list exit state definition
	list exit state mapping
	list exit state profile
	list exit state translation
	list folder
	list footprint
	list group
	list interval
	list job
	list job definition hierarchy
	list named resource
	list resource state definition
	list resource state mapping
	list resource state profile
	list schedule
	list scheduled
	list scheduled event
	list scope
	list session
	list trigger
	list user

	15 move commands
	move folder
	move job definition
	move named resource
	move schedule
	move scope

	16 multicommand commands
	multicommand

	17 register commands
	register

	18 rename commands
	rename environment
	rename event
	rename exit state definition
	rename exit state mapping
	rename exit state profile
	rename exit state translation
	rename folder
	rename footprint
	rename group
	rename interval
	rename job definition
	rename named resource
	rename resource state definition
	rename resource state mapping
	rename resource state profile
	rename schedule
	rename scope
	rename trigger
	rename user

	19 resume commands
	resume

	20 select commands
	select

	21 set commands
	set parameter

	22 show commands
	show comment
	show environment
	show event
	show exit state definition
	show exit state mapping
	show exit state profile
	show exit state translation
	show folder
	show footprint
	show group
	show interval
	show job
	show job definition
	show named resource
	show resource
	show resource state definition
	show resource state mapping
	show resource state profile
	show schedule
	show scheduled event
	show scope
	show session
	show system
	show trigger
	show user

	23 shutdown commands
	shutdown

	24 stop commands
	stop server

	25 submit commands
	submit

	26 suspend commands
	suspend

	III Jobserver Commands
	27 Jobserver Commands
	alter job
	alter jobserver
	connect
	deregister
	disconnect
	get next job
	multicommand
	reassure
	register

	IV Job Commands
	28 Job Commands
	alter job
	connect
	disconnect
	get parameter
	get submittag
	multicommand
	set parameter
	set state
	submit

	V Programming Examples
	Programming Examples
	29 Programming examples

